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Abstract In this work, a comparative study of differ-
ent meta-heuristic techniques in the adaptive control

for the speed regulation of the DC motor with param-

eters uncertainties is presented. The adaptive control

is established as the on-line solution of a constrained

dynamic optimization problem. Several adaptive strate-
gies based on Differential Evolution (DE), Particle Swarm

Optimization (PSO), Bat Algorithm (BAT), Firefly Al-

gorithm (FFA), Wolf Search Algorithm (WSA) and Ge-

netic Algorithm (GA) are proposed in order to on-line
tune the parameters of the DC motor control. Simula-

tion results show that proposed adaptive control strate-

gies are a viable alternative to regulate the speed of the

motor subject to different operation scenarios. The sta-

tistical analysis given in this work shows the features
and the differences among strategies, their feasibility

to set them up experimentally and also a new hybrid

strategy to efficiently solve the problem. In addition,

comparative analysis with a robust control approach
reveal the advantages of the adaptive strategy based

on meta-heuristic techniques in the velocity regulation

of the DC motor.
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1 Introduction

The DC motors are base elements in almost any engi-

neering application that requires movement. These el-

ements are presented in vehicles (Bitar et al. 2015),

in robotic manipulators (Li et al. 2013) and in many
industrial tools. The use of DC motors has several ad-

vantages, some of them are: their operation simplicity

by varying their input voltage, their relatively low cost

and the great diversity of designs that can fit to any
prototype. Almost all applications that use DC motors

require an accurate operation (Yang and Chou 2009)

and sometimes, an efficient operation in terms of en-

ergetic consumption (Raslavičius et al. 2017). Never-

theless, one of the main problems faced by engineers
is the presence of parametric uncertainties. Parametric

uncertainties are due to several causes such as a varia-

tional operating environment, the presence of noise and

the wear of the plant after a long and continuous use.
Parametric uncertainties may be variations in DC mo-

tor parameters, noise in the input/output signal, etc.,

usually unpredictable and responsible of inaccuracy in

the control system. In (Mao et al. 2003) for example,

the friction induced by a DC motor had a negative ef-
fect in the positioning accuracy of an aero-static slider.

Over time, many efforts in search for a solution to
this problem have been made. One way to handle the

effect of parametric uncertainties when their behavior

is well known (deterministic parametric uncertainties),

is by designing an optimal control system or by a cor-

rect off-line adjusting of its parameters (Hashem Zadeh
et al. 2016). However, this kind of solutions is not so ef-

ficient when there are no confidence about the behavior

of the uncertainties.

An approach that deal with a set of bounded un-

certainties (Liu and Yao 2016) is the robust control



2 Alejandro Rodŕıguez-Molina1 et al.

approach where the information about the differences

between the actual system and the systemmodel (model

uncertainty) are used to design a controller. Till the

date, many robust control algorithms have been devel-

oped for the speed regulation task of a DC motor (Song
and Jia 2016; Kim et al. 1997; Linares-Flores et al. 2012;

Orozco et al. 2012). Despite the high performance of ro-

bust controllers under unknown disturbances, the main

disadvantage of this approach lies in the assumption of
bounded uncertainties behavior.

Another way to handle parametric uncertainties is

by using the adaptive control approach. Adaptive con-

trol refers to estimate the plant parameters on-line us-

ing the feedback of the system (Landau et al. 2011).
Then, estimated parameters are used in calculating the

control signal that allows a desired system operation.

Unlike robust control approach, adaptive control is not

limited by or does not need information about the un-
certainties bounds.

Nowadays, there are many approaches from the adap-

tive control theory. In no-linear control, several adap-

tive control laws have been designed and are based on

the system model (Slotine and Li 1991) and some con-
troller tuning techniques have been developed to im-

prove the effectiveness in control systems subject to un-

certainties (Yavuz et al. 2012). In (Kwan et al. 1996)

an adaptive control law was developed to control the
speed of a motor with parameter variations.

Another approach to adaptive control is based on

the use of artificial intelligence (AI) techniques for on-

line tuning of linear controllers. In (Ahn and Truong

2009), a set of fuzzy rules was used to tune the gains of
a PID controller on-line. The resulting controller was

used in force control of an electro-hydraulic system. In

(Le et al. 2013), a neural network was used to obtain the

gains of a controller on-line for the control of a parallel

robot manipulator of two degrees of freedom. The AI
approach have shown to be effective in handling para-

metric uncertainties; nevertheless, a disadvantage of the

used AI techniques is the required system information

from the earlier to be adjusted and trained off-line, in
other words, they need a collection of information previ-

ously acquired, about inputs and outputs of the system

to be controlled, under different operation scenarios.

With the goal of finding the controller parameters

that improve the accuracy of the controlled system op-
eration, researches have been chosen a different control

approach based on the formulation of an optimization

problem, which requires optimization techniques to be

solved (Dasgupta and McGregor 1992; Mori and Kita
2000). There are many computational methods to solve

optimization problems, among them there are the bio-

inspired meta-heuristic techniques which base their op-

eration in natural processes. This kind of techniques has

taken on great importance in the scientific community,

because of their ability to find appropriate solutions

with reasonable computation cost in highly non-linear

optimization problems (Reeves and Sons 1993), which
are commonly presented in the real world problems (Xu

et al. 2016). Another important feature of these tech-

niques, is that several mechanisms can be added in or-

der to handle constraints presented in almost any real
world problem (Mezura-Montes and Coello 2011). An

application of this kind of techniques in control area is

shown in (Fister et al. 2016), where the parameters of

a PID controller are tuned off-line to control a SCARA

robot by using different meta-heuristic techniques. Af-
ter a comparative analysis among techniques, Particle

Swarm Optimization (PSO) proved to be the best alter-

native to solve this particular problem. In (Villarreal-

Cervantes and Alvarez-Gallegos 2016), several variants
of the Differential Evolution algorithm were used to ob-

tain the optimal gains of a PID controller off-line. The

tuned PID parameters were used in the control of a

experimental parallel robot prototype in order to vali-

date the proposed tuning method. One way to obtain
the optimal gains of a controller, when the model of

the system is unknown, is presented in (Mishra et al.

2015). In that work, the parameters of the PI controller

to control a valve were obtained off-line by using cur-
rent system data which is handled by Differential Evo-

lution. The obtained parameters were set in the real

controller and they remained fixed through the execu-

tion time. Nevertheless, one of the main issues in the

bio-inspired meta-heuristic techniques is that they does
not guarantee the optimality condition, such that, they

require a comparative analysis to find the most suit-

able bio-inspired meta-heuristic technique for solving a

particular problem.

In adaptive control, meta-heuristic techniques are
used to find appropriate controller parameters on-line.

In (Lin et al. 2004), the parameters of a PID con-

troller were adjusted on-line by using a Genetic Algo-

rithm. The obtained controller was able to minimize the
position error of a linear induction motor. The above

work shows the performance of the parameter adjust-

ing strategy based in a single meta-heuristic technique,

but there are no evidence of the behavior of different

commonly used or novel techniques under the optimiza-
tion approach to adaptive the control parameter. When

the control problem to be solved requires a quick re-

sponse, one of the big problems that must be afford by

the adaptive control approach based on meta-heuristic
techniques, is the convergence time of the algorithms,

which usually exceeds the minimum time required to

update the control signal.
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The estimation of the controller parameters on-line

through the optimization approach and by using meta-

heuristic techniques may reduce the negative effect of

the parametric uncertainties. Nevertheless, a formal study

which reveal the performance of such strategies and the
viability in uncertain scenarios has not been carried out.

Hence, in this work, the optimization approach is used

for the adaptive control of a DC motor. The use of

several adaptive control strategies based on different
meta-heuristic techniques is proposed to estimate the

control parameters on-line. The main goal of the pro-

posed controllers is to minimize the error in the speed

regulation of the motor. All techniques are adjusted and

implemented pursing their real implementation feasi-
bility, and the optimization technique parameters are

obtained by using the irace package in order to make a

fair comparative analysis. Through a statistical analy-

sis from simulated results, the qualities and differences
among adaptive control strategies in different scenarios

of DC motor uncertainties are shown in order to find

better alternatives for use under this approach.

The main contribution of this work is the presen-

tation of an adaptive control strategy based on meta-

heuristic optimization, which shows to be efficient in

the compensation of uncertainties presented in the DC
motor and feasible in terms of practical experimental

setting up. Another contribution lies in the statistical

study of different meta-heuristic techniques used in the

control strategy, which aids to select the most repre-
sentative features that promote the searching of better

solutions in order to propose more efficient techniques

and also reveals their applicability in the problem of

speed regulation of the DC motor.

The rest of the paper is organized as follows: In

Section 2, the closed-loop system related with the DC

motor dynamics and control system is presented. The
adaptive control strategy based on an on-line constrained

dynamic optimization problem is stated in Section 3.

In Section 4 the meta-heuristic optimization techniques

and the new hybrid proposal are described. The com-

parative analysis is performed and discussed in Section
5. Finally, in Section 6 the conclusions are drawn.

2 DC Motor dynamics and control system

The dynamic model of the DC motor is described by

(1) and its electro-mechanic diagram is shown in Fig.

1, with p = [p1, p2, ..., p6]
T =

[

b0
J0
, km

J0
, ke

La
, Ra

La
, 1

La
, τL
J0

]T

,

p̄ = [p̄1, p̄2, ..., p̄6]
T =

[

b̄0
J̄0
, k̄m

J̄0
, k̄e

L̄a
, R̄a

L̄a
, 1

L̄a
, τ̄L
J̄0

]T

the cur-

rent and estimated vectors of DC motor parameters re-

spectively, where θm, θ̇m, θ̈m are the angle, the angular

Fig. 1 Electro-mechanic diagram of the DC motor.

velocity and the angular acceleration of the shaft re-

spectively, ia is the armature current, J0 is the rotor

moment of inertia, km is the torque constant, b0 is the
viscous friction constant, τL is the load torque, Ra is the

armature resistance, La is the armature inductance, ke
is the electromotive force constant and V is the input

voltage.

dθ̇m
dt

= p2ia − p1θ̇m − p6
dia
dt

= p5V − p4ia − p3θ̇m
(1)

The dynamic model in (1) can be expressed as ẋ =

f (p, x (t) , u (t)), where the current state vector is pro-

posed as x = [x1, x2, x3]
T
=

[

θm, θ̇m, ia

]T

and the con-

trol signal u = V is given in (2).

u =
1

p̄2p̄5
(v + p̄1 (p̄2x3 − p̄1x2 − p̄6))+

p̄3
p̄5

x2+
p̄4
p̄5

x3 (2)

The controller shown in (2) is used to regulate the

speed of the DC motor, where v = kpe−kdẋ2, kp and kd
are the proportional and derivative gains, e = ωr − x2,

ωr is the desired speed and ẋ2 = p2x3 − p1x2 − p6.

3 Adaptive control strategy based on on-line

optimization approach

The adaptive control strategy proposed in this work is
shown in Fig. 2. The aim of this control strategy is to

reduce the error in the speed regulation task of the DC

motor under parametric uncertainties by obtaining the

control parameters based on the motor output.

The control parameters that are obtained in this

approach are those related to the estimation of the mo-

tor output.

It is important to mention that the on-line optimiza-

tion method for the control tuning, requires solving a
constrained dynamic optimization problem (CDOP) at

each integration time △t, in order to give the optimum

parameters to the control signal.
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Desired speed
ωr

u = f(x, p̄)

DC Motor
ẋ = f(p, x, u)

Estimated Motor
˙̄x = f(p̄, x̄, u)

minp̄∈R6

∑3

k=1
[
∫

(xk(t)− x̄k(t))
2dt]

subject to : ˙̄x = f(p̄, x̄, u, t)
g(p̄, x̄) ≤ 0

∀t ∈ [topt −△w, topt]

Optimizer

+

−

x

x̄

p̄∗

p̄∗

1
Fig. 2 Proposed control strategy.

The estimation of the motor output to find the con-

trol parameters in the CDOP requires an estimated DC

motor model with an estimated state vector x̄. Hence,
the aim of the optimization problem is to find the vector

of estimated parameters of the DC motor which mini-

mizes the value of the objective function given in (3).

The function in (3) equitably weights the error among
each of the actual and estimated state variables in the

time interval Ω ∈ [topt − △w, topt], in which topt is

the time instant when the optimization process is per-

formed and △w is the time interval in which the past

states of the motor and of the dynamic model are used
in the error calculation.

min p̄∈R6 J =

3
∑

k=1

[
∫

t∈Ω

(xk(t)− x̄k(t))
2 dt

]

(3)

Additionally, the optimization problem is constrained
by the dynamic of the current DC motor in (4) and of

the estimated model in (5), by the initial conditions

of the state variables in (6) and by the maximum and

minimum bounds of the control signal in (7).

ẋ = f (p, x, u, t) (4)

˙̄x = f (p̄, x̄, u, t) (5)

x̄(topt −△w) = x(topt −△w), x(0) = x0 (6)

umin ≤ u(topt) ≤ umax (7)

4 Meta-heuristic optimizers

In this study, six different meta-heuristic techniques re-

ported in the literature, are used to find a solution to

the optimization problem stated above and are detailed
next. In addition, one hybrid meta-heuristic technique

is proposed to enhance the capabilities in searching re-

liable solutions.

4.1 Differential Evolution

Differential Evolution (DE) bases its operation in the

process of natural evolution (Price et al. 2005). Algo-

rithm 1 shows the rand/1/bin variant of DE. In this
variant an initial population with NP individuals is

generated randomly in the search space. During Gmax

generations, the individuals in the population can mu-

tate using (8) which F is the mutation rate randomly se-
lected per generation in range [Fmin, Fmax]. Also, three

randomly selected individuals are recombined using (9)

where CR is the crossover rate and r1 6= r2 6= r3 6= i

are the random indexes of the parents. For a new gener-

ation, the individuals are selected according to (10). In
the last generation, the best individuals will be found

in population.

Algorithm 1 Differential Evolution
1: G = 0
2: Generate initial population X0 with NP individuals
3: Evaluate X0

4: while G < Gmax do
5: for each xi ∈ XG do
6: Generate a mutant individual vi (see (8))
7: Generate a child individual ui (see (9))
8: end for
9: Select individuals for G+1 (see (10))
10: G = G+ 1
11: end while

vi = xr1 + F (xr2 − xr3) (8)

ui,j =

{

vi,j if rnd(0, 1) ≤ CR

xG
i,j otherwise

(9)

xi =

{

ui if f(ui) < f(xi)
xi otherwise

(10)
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4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) emulates the col-

laborative behavior of many species in search of food

(Kennedy and Eberhart 1995). Algorithm 2 shows the
basic operation of PSO where NP members of a parti-

cle swarm are initially distributed in the search space.

During Gmax generations, particles modify their veloc-

ity using (12) where C1 and C2 are factors that weight

the knowledge of the best known position by a parti-
cle and by the swarm, and ω is a factor which reduce

the velocity of all particles (Shi and Eberhart 1998) ob-

tained with (11) within the range [Vmin, Vmax]. Using

its velocity, each particle modify its position using (13)
and at the end of the cycle, the particles will be in the

best places.

Algorithm 2 Particle Swarm Optimization
1: G = 0
2: Generate initial swarm X0 with NP particles
3: Evaluate X0

4: For each particle xi initialize its best known position
xbest
i = xi

5: Initialize the best known position of the swarm xbest
swarm

6: Initialize the velocity of each particle ẋi

7: while G ≤ Gmax do
8: Update the velocity factor w (see (11))
9: for each xi ∈ XG do
10: Update its velocity ẋi (see (12))
11: Update its position xi (see (13))
12: Update its best known position xbest

i = xi

13: end for
14: Update the best known position of the swarm xbest

swarm

15: G = G+ 1
16: end while

ω = Vmax −
G

Gmax

(Vmax − Vmin) (11)

ẋi = ωẋi + rnd(0, 1) · C1

(

xbest
i − xi

)

+rnd(0, 1) · C2

(

xbest
swarm − xi

) (12)

xi = xi + ẋi (13)

4.3 Bat Algorithm

Bat Algorithm (BAT) is based on the behavior of a
group of bats in search of prey by echo-location (Yang

2010). Algorithm 3 shows the behavior of BAT where

a group of NP bats is distributed in the search space.

During Gmax generations, each bat uses a fixed am-

plitude of its echolocation signal by adjusting the fre-

quency Qi in the range [fmin, fmax] as in (14). Qi is

used to drive the search of a bat to the best position

using (15) and (16). Depending on its pulse rate ri, each
bat can make a random search around the best position

using (17). Each bat can fly randomly as shown in (18)

with Ā the average loudness of bats. If the new position

of the bat improves its conditions, the bat reduces its
loudness Ai and increases its pulse rate ri using (19)

and (20) with α, γ ∈ [0, 1] and r0 the maximum fre-

quency. At the end generation, the bats will be near

their prey.

Algorithm 3 Bat Algorithm
1: G = 0
2: Generate initial population X0 with NP bats
3: Evaluate X0

4: Initialize the best known position of the population
xbest
swarm

5: Initialize the velocity of each bat ẋi

6: while G ≤ Gmax do
7: for each xi ∈ XG do
8: Update its pulse frequency fi (see (14))
9: Update its velocity ẋi (see (15))
10: Update its position xi (see (16))
11: Fly close to xbest

swarm (see (17))
12: Fly randomly (see (18))
13: end for
14: Update the best known position of the population

xbest
swarm

15: G = G+ 1
16: end while

fi = fmin + rnd(0, 1) · (fmax − fmin) (14)

ẋi = ẋi + fi
(

xi − xbest
swarm

)

(15)

xi = xi + ẋi (16)

xi =

{

xbest
swarm + rnd(0, 1) · Ai if rnd(0, 1) > ri

xi otherwise
(17)

xi =

{

xnew = xi + rnd(0, 1) · Ā if f(xnew) < f(xi)

xi otherwise

(18)

Ai = αAi (19)

ri = r0 (1− exp (−γG)) (20)
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4.4 Firefly Algorithm

Firefly Algorithm (Yang 2009) bases its operation on
the behavior of fireflies in matchmaking. Algorithm 4

shows the operation of FFA. FFA uses a population

of NP fireflies distributed in the search space. During

Gmax generations, each firefly can move toward the fire-
flies with greater luminescence (based on the value of

the objective function) using (22), (23) and (24) where r

is the euclidean distance between the positions of a pair

of fireflies, γ is an absorption coefficient, βmin ∈ [0, 1] is

the minimum value of β and α is a step size. The step
size is reduced in each generations as shown in (21) with

w ∈ [0, 1]. At the end of the algorithm, the fireflies will

have the higher luminescence.

Algorithm 4 Firefly Algorithm
1: G = 0
2: Generate initial population X0 with NP fireflies
3: while G ≤ Gmax do
4: Evaluate XG

5: Sort XG ascending based on the luminescence of the
fireflies (value of the objective function)

6: for each xi ∈ XG do
7: for each xj ∈ XG do
8: Move xi towards xj (see (23) and (24))
9: end for
10: end for
11: G = G+ 1
12: end while

α = wα (21)

β = (1− βmin) exp
(

−γr2
)

(22)

xnew = xi + β (xj − xi) + α

(

rnd(0, 1)−
1

2

)

(23)

xi =

{

xnew if f(xj) < f(xi)

xi otherwise
(24)

4.5 Wolf Search Algorithm

Wolf Search Algorithm (WSA) is based on the behav-

ior of groups of wolves in search of food (Tang et al.

2012). Algorithm 5 shows the operation of WSA where
a group of NP wolves are distributed in the search

space. During Gmax generations, each wolf can move

within its radius of visibility using (25) and (30) where

v is the range of visibility and α is the speed factor of

the wolves. Each wolf looks for the best near partner

within its radius of visibility according to (26), if there

is any, the wolf moves toward it using (27) and (30) with

r the euclidean distance. If there is no partner, the wolf
moves again randomly. If a wolf feels threatened, it can

escape to a new position in a wider radius using (28)

and (29) where s is the step size for escape and pa is

the probability of not finding threat. At the end of the
algorithm, the wolves will be near the food.

Algorithm 5 Wolf Search Algorithm
1: G = 0
2: Generate initial population X0 with NP wolves
3: Evaluate X0

4: while G ≤ Gmax do
5: for each xi ∈ XG do
6: Look for food (see (25) and (30))
7: for each xj ∈ XG do
8: Look for the best near partner (see (26))
9: end for
10: if xbest 6= xi then
11: Move toward xbest (see (27) and (30))
12: else
13: Look for food (see (25) and (30))
14: end if
15: Escape (see (28) and (29))
16: end for
17: G = G+ 1
18: end while

xnew = xi + rnd(−1, 1) · αv (25)

xbest =

{

xj if f(xj) < f(xi) and dist (xi, xj) ≤ αv

xi otherwise

(26)

xnew = xi + e−r2 (xbest − xi) + rnd(−1, 1) · αv (27)

xnew = xi + rnd(−1, 1) · sv (28)

xi =

{

xnew if rnd(0, 1) < Pa and f(xnew) < f(xi)

xi otherwise

(29)

xi =

{

xnew if f(xnew) < f(xi)
xi otherwise

(30)
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4.6 Genetic Algorithm

Genetic Algorithms (GAs) are stochastic optimization

techniques whose operation is based in the processes of

natural selection and evolutionary genetics (Sivanan-

dam and Deepa 2007). Algorithm 6 shows the working

of a Genetic Algorithm (GA) in which initially, a group
of NP chromosomes have different genotypic configu-

rations coded with real numbers. Along Gmax genera-

tions, NP pairs of parents are selected by tournament

as shown in Algorithm 7, where TS is the number of
contestants. Each pair of parents is combined to gen-

erate a child chromosome using a heuristic crossover

method (Michalewicz et al. 1994) according with (31)

and (32), where CR is the crossover rate. A child chro-

mosome can mutate by using a non-uniform mutation
operation (NUM) (Michalewicz 1995) shown in (33),

(34) and (35), where F is the mutation rate and b = 1

is a factor that controls the non-uniformity of the mu-

tation. At the end of the algorithm, the chromosomes
will have better qualities.

Algorithm 6 Genetic Algorithm
1: G = 0
2: Generate initial population X0 con NP chromosomes
3: Evaluate X0

4: while G < Gmax do
5: for each xi ∈ XG do
6: Select two parents xj and xk by tournament (see

Algorithm 7))
7: Generate child ui (see (31) and (32))
8: Genera mutant vi (see (33) and (34))
9: end for
10: Replace parents with mutants
11: G = G+ 1
12: end while

Algorithm 7 Selection by tournament for GA.

1: function Selection()
2: rand = random(1, NP )
3: xbest = xrand

4: t = 0
5: while t < TS do
6: rand = rnd(1, NP )
7: if f(xrand) < f(xbest) then
8: xbest = xrand

9: end if
10: t = t+ 1
11: end while
12: return xbest

13: end function

ui =

{

xchild if rnd(0, 1) ≤ CR
xj |xk otherwise

(31)

xchild =

{

rnd(0, 1) · (xj − xk) + xj if f(xj) < f(xk)

rnd(0, 1) · (xk − xj) + xk otherwise

(32)

vi =

{

xmut if rnd(0, 1) ≤ F

ui otherwise
(33)

xmut,j =

{

ui,j +△ (G,Uj − ui,j) if rnd(0, 1) < 0.5

ui,j −△ (G, ui,j − Lj) otherwise

(34)

△ (G, y) = y
(

1− rnd(0, 1)(1−
G

Gmax )
b
)

(35)

4.7 Proposed hybridization

According to the statistical study presented later in

this paper, a hybridization of the most promising meta-

heuristic techniques is proposed in order to enhance

their capabilities in searching reliable solutions. The hy-
bridization consists in including to the PSO a change in

the velocity formula related to the essence of the DE.

This modifications consider a different topology with a

binomial crossover operation and the inclusion of a se-
lection mechanism into the position and velocity of the

particle.

The general operation of the PSO/DE hybridization

is observed in Algorithm 8. In this proposal, NP par-

ticles of a swarm are initially distributed in the search

space. During Gmax generations, particles estimate the

future velocity. The topology of the velocity equation is
given in (36) where the main difference is the inclusion

of two random selected particles or nodes into the graph

denoted by indexes r1 6= r2 6= i. The terms C1 and C2

are factors that weight the knowledge of the best known
position by a particle and by the swarm, C3 weight the

position of two randomly selected particles.

vi = ωẋi + rnd(0, 1) · C1

(

xbest
i − xi

)

+rnd(0, 1) · C2

(

xbest
swarm − xi

)

+rnd(0, 1) · C3 (xr1 − xr2)

(36)

The future velocity is estimated through a binomial

crossover process where exchanges some components of
the velocity equation between (36) and ωẋi. This pro-

cess is expressed in (37), where CR is the probability

of changing the current velocity and ω is a factor which
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reduce the velocity of all particles obtained with (11)

within the range [Vmin, Vmax].

ẋnext
i,j =

{

ωvi,j if rnd(0, 1) ≤ CR

ωẋi,j otherwise
(37)

The future position is estimated according to (38).

xnext
i = xi + ẋnext

i (38)

After estimating its velocity and position, the elitist

selection mechanism decides if the updated velocity and
position of the i − th particle (ẋnext

i and xnext
i ) or the

previous calculated one (ẋi and xi) pass to the next

generation, i.e., it decides if it is better to move to the

next states or wait in the same state for the next gener-
ation. This mechanism is represented in (39) and (40).

Using the appropriate decisions, each particle will be in

the best position at the end of the cycle.

xi =

{

xnext
i if f(xnext

i ) < f(xi)

xi otherwise
(39)

ẋi =

{

ẋnext
i if f(xnext

i ) < f(xi)

ẋi otherwise
(40)

Algorithm 8 PSO/DE hybridization

1: G = 0
2: Generate initial swarm X0 with NP particles
3: Evaluate X0

4: For each particle xi initialize its best known position
xbest
i = xi

5: Initialize the best known position of the swarm xbest
swarm

6: Initialize the velocity of each particle ẋi

7: while G ≤ Gmax do
8: Update the velocity factor w (see (11))
9: for each xi ∈ XG do
10: Estimate its possible future velocity ẋnext

i (see
(36) and (37))

11: Estimate its possible future position xnext
i (see

(38))
12: Decide where to move (see (39) and (40))
13: Update its best known position xbest

i = xi

14: end for
15: Update the best known position of the swarm xbest

swarm

16: G = G+ 1
17: end while

4.8 Constraint handling

To handle the constraints of the optimization problem,

the criterion of Deb was used in each algorithm to de-

cide whether one solution is better than another (Deb

1998). Additionally to the criterion of Deb shown in the

first three points of the following list, the fourth point

is included to handle two solutions whose features do

not allow to distinguish if one is better than other:

– Any feasible is preferred to any infeasible solution.

– Among two feasible solutions, the one having better
objective function value is preferred.

– Among two infeasible solutions, the one having smaller

constraint violation is preferred.

– Among two infeasible solutions with the same con-

straint violation, one of them is preferred randomly
with same probability.

5 Results

5.1 Experiment design

In this work, three experiments were made based on
different kind of parametric uncertainties in the DC

motor. In each experiment, the efficacy of the strate-

gies AC-DE, AC-PSO, AC-BAT, AC-FFA, AC-WSA,

AC-GA and AC-PSO/DE (adaptive controllers based
in DE, PSO, BAT, FFA WSA, GA and PSO/DE re-

spectively) is proven.

The aim of each adaptive control strategy is regulat-

ing the speed of a DC motor to ωr = 52.35 rad/s within

a time period of t ∈ [0, 3]s. The current motor has the

following nominal parameters: La = 102.44× 10−3 H ,

Ra = 9.665 Ω, km = 0.3946 Nm, ke = 0.4133 v/rad,
b0 = 5.85×10−4 Nms and J0 = 3.45×10−4 Nms2. Ad-

ditionally, a discontinuous load is implemented, i.e., the

use of a torque load τL = 0.05 Nm when t ∈ [1, 2]s is

proposed and a torque load τL = 0 Nm is used oth-
erwise. The gains of the controller in (2) are set as

kp = 2500 and kd = 100 and are obtained by trial

and error procedure. For each adaptive strategy, a sam-

pling time of △t = 5 ms is taken and the time inter-

val △w = 50 ms is proposed. For the time interval
t ∈ [0,△w), a constant control signal u = 20 V is used,

whereas for t ≥ △w the control signal in (2) is given.

Furthermore, the bounds of the control signal are set

as −50 V ≤ u ≤ 50 V .

In the first experiment named as EX1, there are no

parametric uncertainties in the DC motor. For the sec-

ond experiment EX2, the DC motor parameters vary
dynamically 10% from their nominal parameters as:

La(t) = La+0.1Lasin(πt), Ra(t) = Ra+0.1Rasin(2πt/3),

km(t) = km+0.1kmsin(2πt), ke(t) = ke+0.1kesin(2πt),

b0(t) = b0+0.1b0sin(πt), J0(t) = J0+0.1J0sin(2πt/3).
In the last experiment EX3, the DC motor parameters

vary dynamically as in EX2 and in addition a random

noise signal is added to the vector of states for each
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sampling instant △t in order to simulate the noise in

the sensor signals. The noise signal has the following

maximum values: ±0.01, ±0.1 and ±0.001 for the an-

gular position x1, angular velocity x2 and current x3

respectively.
In order to provide a fair comparison among the dif-

ferent adaptive control strategies, the parameter tun-

ing for each algorithm was made by the irace pack-

age of the statistical analysis software R (López-Ibáñez
et al. 2016), using the conditions of the first experiment.

Table 1 shows the obtained parameters for each algo-

rithm. The stop criterium is the number of evaluation

of the objective function. 1500 evaluations is set as the

stop criterium in the adaptive control strategy based on
meta-heuristic algorithms. The lower and upper bounds

of the vector of design variables p̄ are shown in Table

2.

All experiments were performed on a PC with a
3.2 GHz i5-6500 processor. The simulations were de-

veloped using C++ programming language and were

compiled using Microsoft Visual C++.

5.2 Discussion

This section is divided into three discussion cases named
as the Case A, the Case B and the Case C. In the

Case A, the comparisons of the adaptive control strate-

gies based on the six different meta-heuristic techniques

(AC-DE, AC-PSO, AC-BAT, AC-FFA, AC-WSA and

AC-GA) are detailed in order to know the most reli-
able strategies to solve the speed regulation problem of

the DC motor under parametric uncertainties. Those

comparisons are related with meta-heuristic techniques

reported in the literature. Then, in the Case B, the
proposed AC-PSO/DE is discussed and compared to

the six meta-heuristic techniques reported in the litera-

ture. For the Case C, comparisons with a robust control

approach are given.

5.2.1 Case A

For each experiment 100 different executions were per-

formed. Tables 3, 4 and 5 contain the results obtained

from the execution of each experiment using the dif-

ferent adaptive control strategies. In these tables, the

standard deviation of the error velocity std(‖e‖), the
magnitude average for the velocity error ‖e‖ and for

the control signal ‖u‖ in the time interval t ∈ [△w, 3]s

from the 100 executions are shown. The best (‖e‖best,

‖u‖best) and the worst (‖e‖worst, ‖u‖worst) execution
with respect to the magnitude of the velocity error

and the control signal are also included. In addition,

the mean time to compute the simulation results in

the time period t ∈ [0, 3]s for 100 executions is dis-

played in texec, and also the convergence time of the

meta-heuristic strategies to find a new control design

parameter vector at each integration time ∆t is given in

texec/n, where n is the number of times that the meta-
heuristic strategies find a new control design parameter

vector in t ∈ [0, 3]s. Boldface is used to represent the

best results for each column. Fig. 3 shows the motor

speed behavior and the control signal applied at each
time instant for the best run of each adaptive control

strategies for the experiments EX1, EX2 and EX3.

It is observed in Table 3 that AC-DE is the con-

troller that more effectively regulates the speed of the

DC motor for the experiment EX1 when there are no
uncertainties. For the experiment EX2 where the DC

motor parameters are dynamical, Table 4 shows that

AC-PSO is more effective to compensate uncertainties.

In the last experiment EX3, where additionally a noise
signal is included into the system, Table 5 shows that

AC-PSO is also the best controller. Fig. 4 shows more

clearly the behavior of the speed regulation error for the

best execution of each controller. It can also be observed

that almost all adaptive control strategies have a good
performance in the DC motor speed regulation. When

a torque load is introduced to the motor, the speed reg-

ulation error for all controllers does not surpass ±5%

of the desired speed with exception of AC-BAT, which
sometimes surpasses ±10%. When the torque load re-

mains fixed or is null, the speed regulation error for all

controllers with exception of AC-BAT do not surpass

±2% of the desired speed.

In terms of the control signal average value (‖u‖), it
can be seen in Tables 3, 4 and 5 that all control strate-

gies for the three experiments EX1, EX2 and EX3 have

a similar energy consumption. Nevertheless, there can

be noticed in ‖u‖worst that in some executions of the
adaptive control strategies, the consumption is more

than twice the control signal average value ‖u‖. This

fact indicates that some executions of the adaptive con-

trol strategies provide violations in the maximum con-

trol signal constraint, which means that those strate-
gies are not viable to be implemented experimentally.

Based on the constraint violation of the control signal

from the 100 executions, the strategies that violated

such constraints in the three experiments are AC-BAT,
AC-WSA and AC-GA.

To ensure that one controller works better than an-

other, it is necessary to check the statistical validity

of the results using a non-parametric test as in (Der-

rac et al. 2011). Tables 6, 7 and 8 show the results of
the Wilcoxon test to compare all controllers by pairs.

The winner between each pair of strategies is shown

in boldface. Wilcoxon test was applied to the 100 ‖e‖
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Table 1 Algorithm parameters (obtained with irace).

Algorithm Parameters
DE NP = 25, CR = 0.92, Fmin = 0.29, Fmax = 0.89
PSO NP = 25, C1 = 0.5, C2 = 0.4, Vmin = −1.0, Vmax = 0.66
BAT NP = 25, A0 = 0.85, r0 = 0.12, fmin = 0.0, fmax = 1.51
FFA NP = 25, α = 0.86, βmin = 0.77, γ = 0.15
WSA NP = 25, α = 0.19, Pa = 0.68, s = 4.9, v = 1.0
GA NP = 25, CR = 0.2, F = 0.25 TS = 15
PSO/DE NP = 25, C1 = 1.1, C2 = 0.62, C3 = 0.99, Vmin = 0.06, Vmax = 0.1, CR = 0.39

Table 2 Bounds of design variables.

Bound p̄1 p̄2 p̄3 p̄4 p̄5 p̄6
Upper 2 1200 5 100 10 150
Lower 0 0 0 0 0 -150

samples of the experiments EX1, EX2 and EX3 for

each controller. The statistical significance of the test

was set as 5% and a two-sided alternative hypothesis

was selected. The two-sided hypothesis establishes that

two controllers have different distributions of ‖e‖. Ad-
ditionally, the rank sums R+ and R− expose the best

algorithm of a pair when the statistical significance de-

noted by p − value do not surpasses 5%. In Table 6,

it can be observed that the distribution of ‖e‖ for AC-
DE controller is different to distributions of the other

controllers. In addition, the rank sums show that the el-

ements of the samples of AC-DE surpass to almost all

elements of the samples of the other controllers, so AC-

DE can be considered as the best controller for speed
regulation when there are no parametric uncertainties

(experiment EX1), followed by the AC-FFA and AC-

GA controllers. For Tables 7 and 8, which contain the

results of Wilcoxon test over the samples of ‖e‖ when
there are uncertainties (experiments EX2 and EX3), the

AC-PSO and AC-FFA controllers showed to be the best

ones (based on the rank sums). Table 9 summarizes the

number of wins of each controller for every experiment

based on the Wilcoxon test. The results indicate that
controllers can be ordered from best to worst based on

their performance as follows: AC-FFA, AC-PSO, AC-

GA, AC-DE, AC-WSA and AC-BAT.

One way to observe the variations of the speed er-

ror using different adaptive control strategies is by pay-

ing attention to the rank sums of the Wilcoxon test

when a controller is compared versus the worst one,
which turned out to be AC-BAT (according to Table

9). Based on the information in Tables 6, 7 and 8, it

is observed that in some comparisons versus AC-BAT,

some strategies have a non-zero value in rank sum.
This indicates that some executions of the adaptive

control strategies, the error vector norm ‖e‖ is worse

than the best execution of AC-BAT (see Tables 3, 4

and 5), i.e., ‖e‖ ≥ 51.4368. The above means that AC-
GA, AC-WSA and AC-BAT present more variation in

the speed error than the other adaptive control strate-

gies and it can also be confirmed with the value of

std(‖e‖) in Tables 3, 4 and 5. The value of std(‖e‖)
indicates what extent the speed error remain without

changing drastically, i.e., the variation with respect to

‖e‖. Hence, using these criteria, AC-DE, AC-FFA and

AC-PSO strategies are more reliable while AC-GA, AC-

WSA and AC-BAT are not reliable.

The main objective in the dynamic optimization

problem into the adaptive strategies is to track the cur-

rent state vector x by the estimated state vector x̄,

and using such vector x̄ to provide the adaptive control

parameters at each time interval. In Fig. 5 it is veri-
fied that the behavior of the current state vector x and

the estimated state vector x̄ for the AC-FFA controller

(which resulted to be the most invariant with respect to

the speed regulation error) is similar. In addition in Fig.
6 the behavior of the adaptive control parameters p̄ are

shown. This behavior is related with the operation of

the meta-heuristic techniques, which search into a wide

space for solutions that provide the major benefits for

a particular problem.

On the other hand, it is an important fact to know

whether the adaptive control strategies can be imple-

mented in an embebed system. Based on the column

texec/n in Table 3, 4 and 5, only AC-FFA cannot be

used in the experimental implementation due to the
convergence time of the algorithm excedes the sampling

time ∆t = 5ms.

Given the statistical evidence in this work and the

feasible to be experimentally implemented without vi-

olate constraints and with a computational time less
than the sampling time, the AC-PSO and AC-DE are

the most viable strategies to solve the speed regulation

problem of the DC motor subject to parametric uncer-

tainties. These strategies are the most effective, trust-
worthy and feasible for experimentally implementation,

because of their capacity to regulate the motor speed

with a reasonable convergence time of their algorithms.



An adaptive control study for the DC motor using meta-heuristic algorithms 11

5.2.2 Case B

The adaptive control strategy based on this PSO and

DE hybridization (AC-PSO/DE) was tested over 100

independent runs under the same experiment condi-
tions in EX1, EX2 and EX3.

The results of using AC-PSO/DE are shown in Ta-

ble 10. The boldface results in Table 10 indicate the
outstanding results with respect to the ones obtained

from the other adaptive strategies presented in Tables

3, 4 and 5. In EX1, the AC-PSO/DE alternative has an

improvement in performance with respect to AC-PSO.
The AC-PSO/DE performance in EX1 is also near to

the one of AC-DE which turned out to be the best al-

ternative when there are no parametric uncertainties.

For EX2 and EX3, the AC-PSO/DE alternative signif-

icantly overcomes the others according to the ‖e‖ value
and its behavior is more reliable if taking into account

the value of std(‖e‖).

The behavior of the best run of AC-PSO/DE can

be observed in Fig. 7 and its error in speed regulation

is shown in Fig. 8. It must be noticed that the error

signals in Fig. 8 are smoother than the error signals

obtained by the other adaptive controllers displayed in
Fig. 4.

To ensure that the proposed AC-PSO/DE alterna-

tive has the most promising behavior, the Wilcoxon test
is also performed among AC-PSO/DE and the other

alternatives for EX1, EX2 and EX3 again with a sta-

tistical significance of 5% and a two-sided alternative

hypothesis. The results of the Wilcoxon test are shown
in Tables 11, 12 and 13. Table 14 summarizes the overall

wins of each controller including AC-PSO/DE. The re-

sults indicate that proposing AC-PSO/DE can improve

the performance provided by the two best adaptive con-
trol alternatives presented in section 5.2 (AC-PSO and

AC-DE) and also it is feasible to be experimentally im-

plemented due to the convergence time of the algorithm

is less than the sampling time.

5.2.3 Case C

Additionally to the behavioral study of the adaptive

control strategy based on different meta-heuristic tech-

niques, it is interesting to observe the differences of this
approach when compared with others such as the robust

control.

For this, a generalized proportional integral observer

based robust controller (RC-GPI) that works for a widely

class of non-linear systems (Sira-Ramirez et al. 2011) is

implemented to perform comparisons.

Table 15 shows the results of using the RC-GPI

for the experiments EX1, EX2 and EX3. The values

of ‖e‖ and ‖u‖ are obtained in the time interval t ∈

[△w, 3]s for a fair comparison. As it can be noticed, the

proposed adaptive control strategy based on different

meta-heuristic techniques overcomes the performance

of the GPI-RC when comparing the ‖e‖worst values in
Tables 3, 4, 5 and 10 with the ‖e‖ values of the GPI-RC

in Table 15.

Fig. 9 shows the behavior of the RC-GPI and Fig.

10 shows at close range of the speed regulation error. In
Figs. 9 and 10, the convergence of the motor speed to

the reference signal is slower than the proposed adap-

tive control strategy. It also can be noticed in Figs. 9

and 10 that the RC-GPI present some difficulties when

there are some noise in the motor states (EX3) and
then the error has some oscillations proportional to the

magnitude of the noise unlike the proposal.

6 Conclusion and future work

The study of different optimization meta-heuristic tech-

niques in the adaptive control, shows the qualities of

each technique in solving the problem of on-line pa-

rameter estimation of a DC motor subject to paramet-
ric uncertainties. Among the analyzed qualities are the

accuracy in speed regulation, the energy consumption,

the invariability with respect to error and the computa-

tional time required for each technique. The simulation

results show that AC-PSO and AC-DE are the most
promising adaptive strategies.

Based on the obtained statistical results, a hybridiza-

tion of the most promising meta-heuristic techniques

is proposed and used in the adaptive control strategy.
This alternative named as AC-PSO/DE has a signifi-

cant performance improvement with respect to the most

promising adaptive strategies (AC-PSO and AC-DE) in

the speed regulation of the DC motor.

The parameter setting of each meta-heuristic tech-
nique is a crucial task whether it is intended to get

appropriate solutions of an on-line optimization prob-

lem. When tuning algorithms for control tasks, it must

attempted to maintain a balance between their search
ability and their convergence time, so that they can

obtain good solutions that fits the time constraint of

the control system. If these parameters are not set cor-

rectly, the result could be an unpredictable behavior

of the algorithm, with slow or premature convergence,
which ultimately results in an untrustworthy behavior

of the adaptive control strategy. For the above reason,

the parameter tuning of each algorithm was carried out

using iterative methods provided by the irace package
of R software.

With the information obtained in the present work,

it was observed a good estimation of the current state
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vectors, even with differences between the current mo-

tor parameters and the estimated ones. While it is true

that the current motor parameter values in the control

system minimize the error, there are also different con-

trol parameter settings that provide minimum values of
the objective function. This way of conceiving the op-

timization problem has the advantage of not only com-

pensate the uncertainties in the DC motor parameters,

but also uncertainties caused by external agents such
as noise signals.

Additionally, some comparisons with a robust con-

trol approach are performed and reveals that the pro-

posed adaptive control strategy based in different meta-

heuristic techniques presents some advantages in the
velocity regulation problem under dynamic and discon-

tinuous uncertainties.

As a future work, the adaptive control strategy based

on a multi-objective problem will be considered in or-
der to manage the trade-off between the error and the

energy consumption.
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Fig. 3 Performance of adaptive controllers based on different meta-heuristic techniques in the speed regulation for the DC
motor in experiments EX1, EX2 and EX3.
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Table 3 Results of the regulation problem considering the experiment EX1 i.e., static DC motor parameters.

Controller ‖e‖
best

‖e‖
worst

‖e‖ std(‖e‖) ‖u‖
best

‖u‖
worst

‖u‖ texec(s) texec/n(s)
AC-DE 7.8592 13.3111 9.7884 0.9069 555.7000 556.0960 555.6708 1.3204 0.0022
AC-PSO 9.3721 22.4361 14.7825 3.0443 556.0610 557.8100 556.4355 1.1589 0.0020
AC-BAT 51.4368 194.6410 74.9646 15.7524 568.1670 1138.1700 581.1571 2.1191 0.0036
AC-FFA 7.7906 18.7228 11.6178 2.3380 555.7100 556.9890 555.8016 4.0855 0.0069
AC-WSA 9.2605 253.5490 19.0906 28.5732 555.8710 1399.5600 578.4469 2.6772 0.0045
AC-GA 7.5284 194.6360 16.3826 21.7629 555.7310 1076.1900 565.2337 1.6688 0.0028

Table 4 Results of the regulation problem considering the experiment EX2 i.e., dynamic DC motor parameters.

Controller ‖e‖
best

‖e‖
worst

‖e‖ std(‖e‖) ‖u‖
best

‖u‖
worst

‖u‖ texec(s) texec/n(s)
AC-DE 14.2482 21.3301 16.8103 1.3608 556.8310 556.2540 556.9652 1.3487 0.0023
AC-PSO 12.5794 21.2095 14.8619 1.8995 556.9260 559.2760 557.8749 1.1040 0.0019
AC-BAT 55.4770 125.9430 78.7608 13.8810 569.6160 831.3740 577.3526 2.2710 0.0039
AC-FFA 12.1161 19.5922 15.1051 1.5246 557.5290 556.9910 557.1327 3.9670 0.0067
AC-WSA 14.2502 1506.0500 36.8529 152.9521 557.8190 8101.6000 653.8842 2.6936 0.0046
AC-GA 13.0528 92.5447 17.9173 9.4084 557.5710 693.0750 560.1773 1.6606 0.0028

Table 5 Results of the regulation problem considering the experiment EX3 i.e., dynamic DC motor parameters and noise.

Controller ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)
AC-DE 14.8856 21.3003 16.7840 1.1851 556.9250 555.9230 556.9366 1.3131 0.0022
AC-PSO 11.8634 23.7810 14.9437 2.0950 557.0500 560.7820 557.6454 1.1438 0.0019
AC-BAT 58.1029 127.2550 80.4205 12.5628 569.0190 661.9910 573.1904 2.2557 0.0038
AC-FFA 12.3510 22.8277 15.6198 2.1701 557.7670 556.0330 557.1785 4.0406 0.0069
AC-WSA 14.0450 710.0560 25.6302 69.9167 557.4980 4866.6600 604.3889 2.8748 0.0049
AC-GA 13.5486 96.3305 18.6915 11.3825 557.7490 707.7740 560.5306 1.6776 0.0028

Table 6 Results of Wilcoxon test for EX1.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO 7 5043 < 0.0001
AC-DE vs AC-BAT 0 5050 < 0.0001
AC-DE vs AC-FFA 718 4332 < 0.0001
AC-DE vs AC-WSA 28 5022 < 0.0001
AC-DE vs AC-GA 596 4454 < 0.0001
AC-PSO vs AC-BAT 0 5050 < 0.0001
AC-PSO vs AC-FFA 4426 624 < 0.0001
AC-PSO vs AC-WSA 2823 2227 0.1332
AC-PSO vs AC-GA 3721 1329 < 0.0001
AC-BAT vs AC-FFA 5050 0 < 0.0001
AC-BAT vs AC-WSA 4868 182 < 0.0001
AC-BAT vs AC-GA 4949 101 < 0.0001
AC-FFA vs AC-WSA 854 4196 < 0.0001
AC-FFA vs AC-GA 1999 3051 0.1933
AC-WSA vs AC-GA 3387 1663 0.0002

In: World Automation Congress 2012, pp 1–6
Price K, Storn RM, Lampinen JA (2005) Differential Evolu-

tion: A Practical Approach to Global Optimization (Nat-
ural Computing Series). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA

Raslavičius L, Keršys A, Makaras R (2017) Management of
hybrid powertrain dynamics and energy consumption for
2wd, 4wd, and HMMWV vehicles. Renewable and Sus-
tainable Energy Reviews 68, Part 1:380 – 396

Reeves CB, Sons (1993) Modern Heuristic Techniques for
Combinatorial Problems, vol 1, 1st edn. Wiley

Table 7 Results of Wilcoxon test for EX2.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO 4434 616 < 0.0001
AC-DE vs AC-BAT 0 5050 < 0.0001
AC-DE vs AC-FFA 4511 539 < 0.0001
AC-DE vs AC-WSA 1758 3292 0.1332
AC-DE vs AC-GA 2977 2073 0.0120
AC-PSO vs AC-BAT 0 5050 < 0.0001
AC-PSO vs AC-FFA 2046 3004 0.0352
AC-PSO vs AC-WSA 459 4591 < 0.0001
AC-PSO vs AC-GA 1087 3963 < 0.0001
AC-BAT vs AC-FFA 5050 0 < 0.0001
AC-BAT vs AC-WSA 4851 199 < 0.0001
AC-BAT vs AC-GA 5049 1 < 0.0001
AC-FFA vs AC-WSA 412 4638 < 0.0001
AC-FFA vs AC-GA 1309 3741 0.0004
AC-WSA vs AC-GA 3390 1660 0.0009

Shi Y, Eberhart R (1998) A modified particle swarm opti-
mizer. In: 1998 IEEE International Conference on Evolu-
tionary Computation Proceedings. IEEE World Congress
on Computational Intelligence, pp 69–73

Sira-Ramirez H, Luviano-Juárez A, Cortés-Romero J (2011)
Control lineal robusto de sistemas no lineales diferencial-
mente planos. Revista Iberoamericana de Automática e
Informática Industrial RIAI 8(1):14 – 28

Sivanandam SN, Deepa SN (2007) Introduction to Genetic
Algorithms, 1st edn. Springer Publishing Company, In-
corporated
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Fig. 4 Error behavior of the adaptive controllers based on different meta-heuristic techniques in the speed regulation of DC
motor, when t ≥ △w for experiments EX1, EX2 and EX3. AC-DE, AC-FFA and AC-PSO show to be the best controllers for
experiments EX1, EX2 and EX3 respectively

Table 8 Results of Wilcoxon test for EX3.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO 4381 669 < 0.0001
AC-DE vs AC-BAT 0 5050 < 0.0001
AC-DE vs AC-FFA 3842 1208 < 0.0001
AC-DE vs AC-WSA 1635 3415 0.0120
AC-DE vs AC-GA 2897 2153 0.0210
AC-PSO vs AC-BAT 0 5050 < 0.0001
AC-PSO vs AC-FFA 1763 3287 0.0569
AC-PSO vs AC-WSA 479 4571 < 0.0001
AC-PSO vs AC-GA 923 4127 < 0.0001
AC-BAT vs AC-FFA 5050 0 < 0.0001
AC-BAT vs AC-WSA 4949 101 < 0.0001
AC-BAT vs AC-GA 5045 5 < 0.0001
AC-FFA vs AC-WSA 760 4290 < 0.0001
AC-FFA vs AC-GA 1579 3471 0.0066
AC-WSA vs AC-GA 3380 1670 0.0009

Slotine JE, Li W (1991) Applied Nonlinear Control, vol 1, 1st
edn. Prentice-Hall

Song Q, Jia C (2016) Robust speed controller design for per-
manent magnet synchronous motor drives based on slid-
ing mode control. Energy Procedia 88:867 – 873

Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algo-
rithm with ephemeral memory. In: Digital Information
Management (ICDIM), 2012 Seventh International Con-
ference on, pp 165–172

Villarreal-Cervantes MG, Alvarez-Gallegos J (2016) Off-line
PID control tuning for a planar parallel robot using DE
variants. Expert Systems with Applications 64:444 – 454

Xu X, Liu J, Li H, Jiang M (2016) Capacity-oriented pas-
senger flow control under uncertain demand: Algorithm
development and real-world case study. Transportation
Research Part E: Logistics and Transportation Review
87:130 – 148

Yang SF, Chou JH (2009) A mechatronic positioning
system actuated using a micro dc-motor-driven pro-
peller–thruster. Mechatronics 19(6):912 – 926
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Table 9 Wins of each controller according to Wilcoxon test.

Experiment AC-DE AC-PSO AC-BAT AC-FFA AC-WSA AC-GA
EX1 5 1 0 3 1 3
EX2 1 5 0 4 1 3
EX3 2 4 0 4 1 3
Total 8 10 0 11 3 9

Table 10 Results of the regulation problem by using the AC-PSO/DE alternative.

Experiment ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)
EX1 9.5292 16.5754 12.0754 1.3076 555.3320 556.8170 555.9418 1.5613 0.0027
EX2 11.9610 21.4727 14.1146 1.2366 557.6340 562.3800 557.2886 1.5338 0.0026
EX3 11.3433 19.0645 13.8674 0.8415 558.1310 556.9860 557.2309 1.6255 0.0028
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Fig. 5 Behavior of estimated state vector x̄ of the DC motor for AC-FFA controller, when t ≥ △w for experiment EX3.

Table 11 Results of Wilcoxon test for EX1 including the
AC-PSO/DE alternative.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO/DE 132.5 4917.5 < 0.0001
AC-PSO vs AC-PSO/DE 4392 658 < 0.0001
AC-BAT vs AC-PSO/DE 5050 0 < 0.0001
AC-FFA vs AC-PSO/DE 1919 3131 0.0209
AC-WSA vs AC-PSO/DE 3966 1084 0.0008
AC-GA vs AC-PSO/DE 2526 2524 0.6173

Yang XS (2009) Firefly Algorithms for Multimodal Optimiza-
tion, Springer Berlin Heidelberg, Berlin, Heidelberg, pp
169–178

Yang XS (2010) A New Metaheuristic Bat-Inspired Algo-
rithm, Springer Berlin Heidelberg, Berlin, Heidelberg, pp
65–74

Table 12 Results of Wilcoxon test for EX2 including the
AC-PSO/DE alternative.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO/DE 4957 93 < 0.0001
AC-PSO vs AC-PSO/DE 3349 1701 0.0569
AC-BAT vs AC-PSO/DE 5050 0 < 0.0001
AC-FFA vs AC-PSO/DE 3965 1355 < 0.0001
AC-WSA vs AC-PSO/DE 5014 36 < 0.0001
AC-GA vs AC-PSO/DE 4694 356 < 0.0001

Yavuz H, Stallard TJ, McCabe AP, Aggidis GA (2012) De-
termination of optimal parameters for a hydraulic power
take-off unit of a wave energy converter in regular waves.
Proceedings of the Institution of Mechanical Engineers,
Part A: Journal of Power and Energy 226:98–111
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Fig. 6 Behavior of estimated parameters p̄ of the DC motor for AC-FFA controller, when t ≥ △w for experiment EX3. The
solid line indicates the behavior of p and dots are the values of p̄ for each instant △t.

0 0.5 1 1.5 2 2.5 3

t (s)

0

20

40

60
AC-PSO/DE

EX1

EX2

EX3

Ref.

0 0.5 1 1.5 2 2.5 3

t (s)

0

10

20

30

40
AC-PSO/DE

Fig. 7 Performance of adaptive controllers based on PSO/DE hybridization in the speed regulation for the DC motor in
experiments EX1, EX2 and EX3.
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Table 13 Results of Wilcoxon test for EX3 including the
AC-PSO/DE alternative.

Wilcoxon test R
−

R+ p-value
AC-DE vs AC-PSO/DE 5049 1 < 0.0001
AC-PSO vs AC-PSO/DE 3769 1281 0.0017
AC-BAT vs AC-PSO/DE 5050 0 < 0.0001
AC-FFA vs AC-PSO/DE 4442 608 < 0.0001
AC-WSA vs AC-PSO/DE 4997 53 < 0.0001
AC-GA vs AC-PSO/DE 4871 179 < 0.0001
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Fig. 8 Error behavior of the adaptive controller based on
PSO/DE hybridization in the speed regulation of DC motor,
when t ≥ △w for experiments EX1, EX2 and EX3.
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Table 14 Wins of each controller according to Wilcoxon test including the AC-PSO/DE alternative.

Experiment AC-DE AC-PSO AC-BAT AC-FFA AC-WSA AC-GA AC-PSO/DE
EX1 6 1 0 4 1 3 3
EX2 1 5 0 4 1 3 5
EX3 2 4 0 4 1 3 6
Total 9 10 0 12 3 9 14
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Fig. 9 Performance of the RC-GPI in the speed regulation for the DC motor in experiments EX1, EX2 and EX3 with a zoom
(right figure).

Table 15 Results of the regulation problem by using the
RC-GPI approach.

Experiment ‖e‖ ‖u‖
EX1 87.3531 551.2878
EX2 89.4196 552.7130
EX3 89.4904 553.5853
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Fig. 10 Error behavior of the RC-GPI in the speed regula-
tion of DC motor, when t ≥ △w for experiments EX1, EX2
and EX3.


