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Abstract The structure-control design approach of mechatronic systems requires a
different design formulation where the mechanical structure and control system are
simultaneously designed. Optimization problems are commonly stated to confront the
structure-control design formulation.Nevertheless, these problems are often very com-
plexwith a highly nonlinear dependence between the design variables and performance
functions. This fact has made the use of evolutionary algorithms, a feasible alternative
to solve the highly nonlinear optimization problem; themethod to find the best solution
is an open issue in the structure-control design approach. Hence, this paper presents a
mechanism to exhaustively exploit the solutions in the differential evolution (DE) algo-
rithm in order to find more non-dominated solutions with uniformly distributed Pareto
front and better trade-offs in the structure-control design framework. The proposed
approach adopts an external population to retain the non-dominated solutions found
during the evolutionary process and includes a mechanism to mutate the individuals in
their corresponding external population region. As a study case, the structure-control
design of a serial-parallel manipulator with its control system is stated as a dynamic
optimization problem and is solved by using the proposed approach. A comparative
analysis shows that the multi-objective exhaustive exploitation differential evolution
obtained a superior performance in the structure-control design framework than a DE
algorithm which did not consider the proposal. Hence, the resulting designs provide
better trade-offs between the structure-control performance functions.
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1 Introduction

Many processes and products in the area of mechanical and electrical engineering are
showing an increasing integration of a mechanical system with its embedded con-
trol strategy. The integration of such systems significantly improves the performance
of the mechatronic system due to the mechanical structure depending on the control
system and the control system depending on the mechanical structure. The integra-
tion of mechanical structure and control in mechatronic systems has originated a
multi-disciplinary framework for their design [1,2]. In this multi-disciplinary design
approach, a detailed description of the system behavior is needed, where the mechan-
ical behavior and the control system dynamic performance must be considered. This
approach has emerged from space applications [3,4], where the systems are stationary
structures. Lately, different complex dynamics are included in the multi-disciplinary
design approach. The sequential and simultaneous strategies have been used to face the
structure-control design framework [5]. In the sequential strategy [6–8], the mechan-
ical structure is firstly designed, and then, in a second design step the control system
is carried out. This can be executed by single pass or iterative processes where it is
repetitively continues until the desired performance is fulfilled. It was theoretically
and experimentally shown in several works [5,8–11] that the sequential optimiza-
tion strategies do not guarantee, at least for linear systems, the coupling effects in
the combined structure/controller system. For nonlinear systems, this assumption is
not theoretically guaranteed. Then, the simultaneous strategies are the best options
to merge their corresponding designs. Among the promising simultaneous strategies
are those that find the minimum combined performance for the mechatronic system
by assuming that the optimum structure occurs when the gain problem is minimized;
such approach is called bi-level strategy. Nevertheless, this may not allow the full
exploration of the feasible space in the structure-control design framework, so that
the best strategy comes from using the all-at-once strategy where all design param-
eters and performance functions are synergetically combined [5]. Hereinafter, when
mentioning simultaneous strategy, it refers especially to the all-at-once strategy.

In simultaneous strategies, multi-objective optimization problems for the optimal
balance between the performance of both the basicmechanical structure and the overall
control system must be stated. Nevertheless, the mechatronic system design is usu-
ally formulated into a scalarization method as in [11–18], where the multi-objective
optimization problem is transformed into a single-objective optimization one. The
most common scalarization method is the weighted sum approach (WSA) [19], and
the main drawback is when a non-convex optimization problem is given (a condition
that is not generally satisfied in real problems) such that an evenly distributed set
of weights does not necessarily produces an evenly distributed representation of the
Pareto-optimal set, i.e., differentweightsmay produce nearly similar objective vectors.
Therefore, the obtained solution shows a high sensitivity to the chosen weights, and a
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trial-and-error procedure is usually used to find suchweights and some non-dominated
solutions (Pareto- optimal solutions) could not be found.

In the research work of Portilla, et. al. [16], a pinion-rack continuously variable
transmission (CVT) is designed by stating a multi-objective optimization problem.
A scalarization method (goal attainment method) and a Pareto-based multi-objective
method (modified differential evolution algorithm) were compared. The goal attain-
ment method was very sensitive to the initial point, and few Pareto solutions could
be found. Two different weights were chosen with the goal attainment method, and
the two Pareto solutions were not distributed according to the weights. On the other
hand, with the modified differential evolution algorithm, more Pareto solutions were
found such that more diversity in the design of the CVT was obtained. This diversity
is useful for the decision making of the designer. In the CVT system, the solutions
found by the modified differential evolution algorithm were preferred. As a general
point of view, in the scalarization method the synergetic combination of performance
functions is not totally fulfilled because of the weight sensitivity.

Multiple criteria problems in simultaneous strategies for the design of mechatronic
systems should be preferably formulated as Pareto-based multi-objective optimization
problem (PBMOP) [20] where the concept of Pareto optimality is incorporated and
the best possible trade-off should be found by evaluating several incommensurable
and often conflicting objectives. Optimizing PBMOP does not only mean finding a
single optimal solution, but rather a set of alternative solutions. When all objectives
are considered, these solutions are optimal in the wider sense that no other solutions in
the search space are superior. These solutions are known as Pareto-optimal solutions.
Consequently, the final solution may not be unique and the decision-making problem
depends on the design specification for the application. PBMOP faces and solves the
issues associated to weigh the performance functions in the WSA. Nevertheless, the
selection issue related to the optimization technique to be used in the PBMOP is a
crucial factor to find a synergetic trade-off in the structure-control design performance
for the mechatronic design framework.

Great research efforts were first dedicated to guarantee the optimality conditions in
gradient-based optimization techniques [21]. However, the necessity to solve complex
engineering problems has promoted the use of evolutionary algorithms (EAs) [22]
which inherently explore a set of possible solutions simultaneously. This characteristic
enables the search for an entire set of Pareto-optimal solutions in a single run of the
algorithm instead of having to carry out a series of separated runs as in the case of
gradient-based techniques. In addition, evolutionary algorithms aremore susceptible to
dealwith problem- dependent characteristics (convex, concave or even discontinuous),
such as the shape of the Pareto front and the mathematical properties of the search
space. In this direction, to the best of the author’s knowledge, few works related to the
mechatronic design framework have been formulated as PBMOP, e.g., in the design of
CVT system [23], the parallel robot [24] and the four bar system [25,26]. Nevertheless,
only in Portilla, et. al. [23], modifications in the standard evolutionary algorithm in the
mechatronic design framework were considered. In that work, the reconfigurability
feature of non-iterative concurrent mechatronic design was enhanced by including
into the differential evolution algorithm a mechanism to diversify the solutions. The
proposed differential evolution algorithm obtains an extended and well-distributed
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Pareto front, where the obtained solutions improve the parametric reconfigurations of
the mechanical and control design for two mechatronic systems.

In recent years, the differential evolution algorithm [27] has been widely used to
solve complex optimization problems in spite of rising EAs in the literature. This is
due to the differential evolution algorithm being a simple and efficient evolutionary
algorithmwith excellent global search ability and easy implementation [28,29]. These
characteristicsmotivate the researchonhow to improve the explorative and exploitative
search to find better results and hence to avoid stagnation and premature convergence
[30,31]. An efficient exploration mechanism in the search space and an effective
exploitation mechanism in a region of the search space would be desirable into the
optimization algorithm. The exploration can thoroughly search different regions,while
the exploitation accelerates the convergence to the optimum solution in the region.
Furthermore, the explorative/exploitativemechanism in the differential evolution (DE)
algorithm is an open issue and depends on the problem at hand.

Based on the previous literature, the main concern in the structure-control design
framework based on simultaneous strategy and stated as PBMOP is to find more
and diverse solutions in the Pareto front because the problem is generally larger and
difficult to solve due to the strong dependency between the design variables and per-
formance function. However, there is a lack of information about the importance of
the optimization technique to fulfill the synergetic trade-off in the structure-control
design framework. Therefore, in this paper an exhaustive exploitation mechanism
of an external population and the constrained dominance concept is included into
the DE algorithm for the purpose of finding a better synergetic integration in the
structure-control design framework of mechatronic systems. The superior perfor-
mance of the proposed multi-objective exhaustive exploitation differential evolution
algorithm (MOEEDE) is validated in a particular study case which indicate a strong
dependency between the obtained Pareto solutions and how the search in the feasible
space is made by the algorithm.

The paper is organized as follows: In the next section, themulti-objective exhaustive
exploitation differential evolution algorithm is presented. The design variable vector,
performance functions and constraints are stated in Sect. 3 for the study case in the
structure-control design framework. The comparative analysis of the results provided
by the proposed MOEEDE with a DE version without the exhaustive exploitation
mechanism is shown in Sect. 4. Finally, in Sect. 5, the conclusions are given.

2 Exhaustive Exploitation Differential Evolution for Multi-Objective
Dynamic Optimization

2.1 Multi-Objective Dynamic Optimization Problem

A multi-objective dynamic optimization problem (MODOP) is defined as finding the
n p−dimensional decision variable vector p = [p1, . . . , pn]T ∈ R

n p ⊆ Ω such
that optimizes (minimize or maximize) the performance index vector J̄(x(t),p, t) =
[ J̄1(x(t),p, t) , . . . , J̄i (x(t),p, t)] ∀ i = 1, . . . , n J̄ subject to inequality and equality
constraint vector gi (x,p, t) ≤ 0 ∀ i = , 1, . . . , ng , h j (x,p, t) = 0 ∀ j = 1, . . . , nh ,
respectively, and differential algebraic equations ẋ(t) = f (x(t),u,p, t) that describe
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the dynamic behavior of the system with the state vector x ∈ R
nx , the input control

vector u ∈ R
nu and the initial state vector x(0) = xI N I ∈ R

nx . In mathematical
notation, the MODOP is formulated as in (1), where t ∈ R is the time variable.

Min
p∈�

J̄(p) (1)

subject to:
ẋ = dx

dt = f(x,u,p, t)
g(x,p, t) < 0, ∈ R

ng

h(x,p, t) = 0, ∈ R
nh

x(0) = xI N I

2.2 Multi-Objective Exhaustive Exploitation Differential Evolution Algorithm

The nonlinear dynamic multi-objective optimization problem stated in (1) is solved
by using the proposed multi-objective exhaustive exploitation differential evolution
algorithm (MOEEDE).

Differential evolution (DE) [27] is a population-based evolutionary algorithm with
a simple mutation mechanism and a crossover operator that performs a linear recom-
bination of a number of individuals (normally three) and one parent (which is the
subject to be replaced) to create one child. The selection is deterministic between
the parent and the child (i.e., the best of them remains in the next population). DE
shares similarities with traditional evolutionary algorithms. However, it does not use
binary encoding [32] nor a probability density function to self-adapt its parameters as
the evolution strategy [33]. Besides, DE has been widely used to solve optimization
problems applied to mechanical design [34,35].

DE is generally easy to implement but usually spends more computation time than
nonlinear programming techniques [16]. The key parameters are:NP—the population
size that is the set of individuals, G—is the generation or iteration in the optimization
process, CR—the crossover constant that controls the influence of the parent in the
generation of the offspring (higher values mean less influence of the parent), F—the
weight applied to the influence of two of the three individuals selected at random in
order to generate the offspring (scaling factor).

The original DE algorithm [27] can only solve unconstrained optimization prob-
lems. Therefore, several modifications of the original DE algorithm are made to
improve the Pareto solutions in constrained multi-objective problems. These modi-
fications are mentioned below:

– Constrained dominance is proposed to select between the father and child.
– A mechanism for accepting individuals to external population (external file) is
implemented.

– A mechanism to exhaustively exploit the non-dominated solutions in each Pareto
front hyper-grid of the external population is included in the mutation process.
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In Algorithms 1 and 2, the MOEEDE pseudo-code is presented. Before giving the
details of the modifications in the original DE algorithm, some important concepts in
multi-objective optimization problems are shown.

Algorithm 1 First part of the MOEEDE algorithm (G ≤ GMaxMOEEDE × EEF).
Step 1: G = 0
Step 2: Create a random initial base population xiG ∀i = 1, . . . , BP .

Step 3: Create an empty external population zk = ∅ ∀k = 1, . . . , MP .
Step 4: Create an empty trial population yl = ∅ ∀l = 1, . . . , BP .
Step 5: Evaluate J̄(xiG , t), g(xiG , t), h(xiG , t) ∀i = 1, . . . , BP∧ ∀t = 0, . . . , t f .
Step 6: while (G ≤ GMaxMOEEDE × EEF) do
Step 7: for i = 1 to BP do
Step 8: Select randomly {r1 �= r2 �= r3 �= i} ∈ xiG ∀i = 1, . . . , BP .
Step 9: jrand =randint(1, D).
Step 10: for j = 1 to D do
Step 11: if (rand j [0, 1) < CR or j = jrand ) then

Step 12: uij,G+1 = x
r1
j,G + F(x

r2
j,G − x

r3
j,G )

Step 13: else
Step 14: uij,G+1 = xij,G
Step 15: end if
Step 16: end for
Step 17: Evaluate J̄(uiG+1, t), g(u

i
G+1, t), h(uiG+1, t) ∀t = 0, . . . , t f

Step 18: if (uiG+1 [�] xiG ) then

Step 19: xiG+1 = uiG+1
Step 20: Store uiG+1 in y
Step 21: else
Step 22: xiG+1 = xiG
Step 23: end if
Step 24: end for
Step 25: The individual yi can be accepted in the external population z whether the Definition 2.8 is satisfied.
Step 26: y = ∅

Step 27: G = G + 1
Step 28: end while

Definition 2.1 Let p ∈ Ω be all design space solutions, the feasible region is repre-
sented as Ω̂ = {p ∈ Ω | g(x,p, t) < 0,h(x,p, t) = 0}
Definition 2.2 A vector p ∈ R

n p dominates a vector p′ ∈ R
n p (named as p � p′)

⇐⇒ p is smaller than p′, i. e., ∀i ∈ {1, . . . , n J̄ }, J̄i (p) ≤ J̄i (p′) ∧ ∃i ∈ {1, . . . , n J̄ } :
J̄i (p) < J̄i (p′).
Definition 2.3 The continuos time t ∈ R is discretized into nΔt = t f −t0

Δt +1 samples,
i.e., t = {t0, t1 = Δt, t2 = 2Δt, . . . , tnΔt = t f } ∈ R. The initial and final time are
represented by t0 and t f , respectively.

Definition 2.4 A solution p ∈ Ω̂ is a Pareto optimum in Ω̂ ⇐⇒ there is not p′ ∈ Ω̂

which p′ � p.

Definition 2.5 The set of Pareto optimum P∗ is defined as:

P∗ := {p ∈ Ω̂|�J̄(p′) � J̄(p)}∀p′ �= p ∈ Ω̂

Each solution of the Pareto optimum set is called non-dominated solution.
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Algorithm 2 Second part of the MOEEDE algorithm (GMaxMOEEDE × EEF <

G ≤ GMax ).
Step 29: while (G < GMaxMOEEDE ) do
Step 30: p̆ = 1

Step 31: Assign the number of generated offsprings for each occupied grid niog = BP2
noe

.
Step 32: for i = 1 to nrow × ncol do
Step 33: if (z �= ∅) then
Step 34: for k = 1 to niog do
Step 35: Select randomly {r1 �= r2 �= r3} ∈ Γi
Step 36: jrand =randint(1, D)

Step 37: for j = 1 to D do
Step 38: if (rand j [0, 1) < CR or j = jrand ) then

Step 39: u p̆j,G+1 = z
r1
j + F(z

r2
j − z

r3
j )

Step 40: else

Step 41: u p̆j,G+1 = z
r1
j

Step 42: end if
Step 43: end for

Step 44: Evaluate J̄(u p̆G+1, t), g(u
p̆
G+1, t), h(u p̆G+1, t) ∀t = 0, . . . , t f

Step 45: if (u p̆G+1 [�] zr1 ) then

Step 46: Store u p̆G+1 in y
Step 47: end if
Step 48: p̆ = p̆ + 1
Step 49: end for
Step 50: end if
Step 51: end for
Step 52: Acceptance mechanism to external population
Step 53: y = ∅

Step 54: G = G + 1
Step 55: end while

Definition 2.6 The Pareto front PF is defined as:

PF := {J̄(p)|p ∈ P∗}

2.3 Selection with Constrained Dominance

The selection between the father (base vector) and the child (mutant vector) in the
MOEEDE algorithm is made by using constrained dominance. This is a modification
of the definition domination between the solution i and j .

Definition 2.7 Asolution i dominateswith constraint a solution j (named as ûi [�]v̂ j ),
if any of the following conditions is fulfilled.

1. Solutions i and j are both feasible and solution i dominates solution j .
2. Solution i is feasible and solution j is not feasible.
3. Solutions i and j are both infeasible, but the solution i has a smaller constraint

violation number.
4. Solutions i and j are both infeasible with the same number of constraint violations,

but solution i has a smaller constraint distance ζgi .

It is important to mention that the third point of Definition 2.7 only counts the
number of constraints that are violated. But this is not related to the closeness of the
violated constraint to the corresponding active region.
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The constraint distance ζg measures the distance from the violated constraint value
to its corresponding active constraint value. The constraint distance of a individual A,
named as ζgA , is defined as in (2), where g jMAX is the values of the constraints g j with
the maximum values in the design variable vector p.

ζgA =
ng∑

j=1

nΔt∑

i=0

max

(
0,

g j (x,p, ti )

g jMAX

)
(2)

Hence, the fourth point of Definition 2.7 includes the constraint distance ζg as an
additional measure to select the closest individual to the active region. This is more
useful in dynamic constraints since if a constraint is violated in only one time interval
[ti−1, ti ] ∃i ∈ {1, . . . , nΔt }, the third point of Definition 2.7 will only indicate one
constraint violation. Meanwhile, the four point will additionally indicate whether the
solution is close to the feasible region.

The selection between the father vector and child vector using constrained dom-
inance is shown in rows 18–23 in Algorithm 1, and the selection between the base
vector of the mutant vector and the child vector using constrained dominance is shown
in rows 45–47 in Algorithm 2.

2.4 Acceptance Mechanism to External Population

An external population or external file is included to store the new non-dominated
solutions (new individuals) for each generation. The external population can include
a maximum ofMP solutions.

In addition, a self-adaptive grid (S-A grid), similar to that adopted in PAES [36],
is implemented in the external population. The S-A grid divides the Pareto front of
the external population as a multi-dimensional arrays (hyper-grid). For the particular
case of two performance functions, which is the study case, two-dimensional matrix
is obtained. Then, the grid is set to have nrow × ncol elements and the length of each
element is self-adjusted considering the maximum and minimum limits of the found
Pareto front.

Definition 2.8 is considered to accept a new individual in the external population:

Definition 2.8 Let yi ∈ Ω̂ , iff J̄(yi ) � J̄(z j ) |∃ j = {1, . . . ,MP}, then yi is accepted
in the external population z and z = z \ {z j }.

The new individual is accepted whether it is feasible and dominates at least one
individual of the external population and those dominated individuals are removed.
On the contrary, the individual is rejected.

Each element of the grid will have at most nMax Ind individuals to not overflow the
external file (external population). If more individuals are found, the individuals with
less crowding distance grouped in such grid element are eliminated until themaximum
limit of individuals per element (nMax Ind ) is fulfilled. The crowding distance [37] of
the ith individual is the Euclidian distance between the (i − 1)th individual and the
(i + 1)th individual in the phenotype space.
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The pseudo-code of the acceptance mechanism to external population is shown in
Algorithm 3.

Algorithm 3 Acceptance mechanism to external population.
Step 1: Includes the individuals in yi that can be accepted in the external population z based on Definition 2.8.
Step 2: Make the nrow × ncol grid to the non-dominated solution vector z considering the maximum and minimum

limits of the found Pareto front.
Step 3: Assign each individual of z its corresponding grid element.
Step 4: Count the occupied element number noe in the grid of z and the individual number at each grid element.
Step 5: if individuals of the occupied elements exceed of nMax Ind . then
Step 6: Eliminate the excessive individuals in the corresponding element of the grid z (based on crowding distance

in the occupied grid element).
Step 7: end if

2.5 Exhaustive Exploitation Mechanism in the Mutation Process

The exhaustive exploitationmechanismconsists in carrying out themutation process in
two different modes and depends on the exhaustive exploitation factor value (EEF ∈
]0, 1]). This factor is referred to the porcentage of the maximum generation number
GMax where the mutation process is changed.

In the first part of the algorithm, i.e., when G ≤ GMax × EEF (before using
the exhaustive exploitation mechanism) shown in Algorithm 1, the mutation process
mutates the base population xiG ∀i = 1, . . . ,BP to produce a population ofBP mutant
vectors viG+1 ∀ i ∈ {1, . . . ,BP}. Therefore, the mutant vector is generated by using
three random individuals in xG as in the basic differential evolution algorithm [27]
and uniform crossover is used. The selection process between the child uiG+1 and
the target vector xiG is based on the constrained dominance, and the non-dominated
solutions through generations are stored in y.

The exhaustive exploitation mechanism is activated in the second part of the algo-
rithm (shown in Algorithm 2), i.e., when GMax × EEF < G ≤ GMax . The mutation
process is generated by using Definition 2.9 where the individuals are mutated with
individuals in the same grid element of the external population zk ∀ k = 1, . . . ,MP

to produce another population of BP2 mutant vectors v p̆
G+1 ∀ p̆ ∈ {1, . . . ,BP2}. The

number of generated mutant vector per occupied elements niog is based on the chosen
BP2 population and the occupied element number in the grid noe, which results in
niog = BP2

noe
.

Definition 2.9 Let the set Γi ⊂ z the individuals in the ith grid element in the external
population z, then the mutant vector is generated as follows:

v p̆
G+1 := {zr1 + F(zr2 − zr3) | {r1 �= r2 �= r3 �= p̆} ⊆ Γi /∈ ∅} (3)

The random selection of three different individuals (zr1 , zr2 and zr3 ∈ Γi ) in the
mutation process exerts a random selection pressure to the external population by
regions (grid element) allowing the generation of more and better individuals in each
grid element and generation. Two situations can be presented in the selection of the
three random individuals in Γi for the ith grid element and depends on the number of
individuals:
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– If Γi ∈ R
n|1 ≤ n ≤ 2, select one individual from the grid element as the base

vector, and the rest by considering the random selection of all individuals in the
external population.

– If Γi ∈ R
n|n > 2, the random selection considers all individuals in the grid

element.

It is important to note that the last consideration shown above, the algorithm exhaus-
tively searches solutions into the occupied grid element.A local selection of individuals
into the grid element is carried out. Therefore, the non-dominated solutions in the exter-
nal population are increased and improve the trade-offs among the objective functions.
In addition, with the first consideration, the diversity of the solution is promoted to
explore other regions of the search space.

The same uniform crossover, as in the first part of the algorithm, is employed in
the second part, and the selection process is made by using constrained dominance
between the child u p̆

G+1 and the base vector zr1 . The non-dominated solutions are
stored in y and are included in the external population zk ∀k = 1, . . .MP following
the acceptance mechanism described in Sect. 2.4.

3 Study Case: Structure-Control Design of a 3-d.o.f Manipulator with
Parallel Mechanism

As a study case, the design of a three-degree-of-freedom (d.o.f) manipulator with par-
allel structure and the design of its operational space proportional-integral-derivative
(PID) control is formulated as a dynamic optimization problemwithin themechatronic
design framework. In what follows, the closed-loop robotic system, the performance
functions related to the structure and control design as well as the design constraints
are detailed.

3.1 Robotic Manipulator and Control System

The three-degree-of-freedom (d.o.f) manipulator with parallel mechanism is shown in
Fig. 1, where q = [q1, q2, q3]T and q̇ = [q̇1, q̇2, q̇3]T are the generalized coordinate
vector and the generalized velocity vector, respectively; τ = [τ1, τ2, τ3]T is the input
torque vector; the ith dynamic parameters are the mass mi , the moment of inertia
Ii with respect to the axis y, the length lci and angle γi of the mass center; and the
ith kinematic parameters are the link’s length li . The robotic system includes three
degrees of freedom (d.o. f ) in the joint space which provide the ability to move the
tip of the end effector (x̂ , ẑ) in the plane X − Z with an orientation φ̂ with respect to
the axis X of the coordinate system X − Z . A particular characteristic of this system
is the parallel mechanism. This mechanism provides the ability to achieve higher
precision and higher stiffness in the wrist coordinates (x̂m , ẑm) of the system such as
a parallel robot [38]. The inclusion of the fifth link shows that the robotic system can
be considered as a parallel-serial robot.

Considering the formalism of Euler–Lagrange [39], the dynamic model of the
robotic system can be derived. Within this formalism, the Lagrangian is formulated
as (4), where Ki (q, q̇) and Pi (q) are the kinetic and potential energy of the ith link.
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a)

Fig. 1 Schematic diagram of the three-degree-of-freedom (d.o.f) manipulator with serial-parallel mecha-
nism

L(q, q̇) =
5∑

i=1

Ki (q, q̇) −
5∑

i=1

Pi (q) (4)

The kinetic and potential energy of the ith link is computed as in (5)–(6), where
vi ∈ R

3 is the linear velocity of the mass center with respect to the inertial frame,
iwi ∈ R

3 is the angular velocity of the mass center with respect to the ith frame,
ci Ii ∈ R

3×3 is the inertia tensor of the ith link with respect to its mass center, hi is
the distance of the mass center with respect to the axis z and g is the gravitational
acceleration.

Ki = 1

2
mivTi vi + 1

2
iwT

i
ci Ii iwi

K = q̇21 (m1l
2
c1 + I1)/2 + q̇22 (m2l

2
c2 + I2)/2 + m3(l2q̇2 cos(q2)

+ lc3q̇1 cos(γ3 + q1))
2/2 + I5(q̇2/2 + q̇3/2)(q̇2 + q̇3) + I4q̇

2
2/2

+m5(q̇2(l4 cos(q2) + lc5 cos(γ5 + q2 + q3)) − l1q̇1 cos(q1)

+ lc5q̇3 cos(γ5 + q2 + q3))
2/2 + m4(l1q̇1 sin(q1) − lc4q̇2 sin(γ4 + q2))

2/2

+m3(l2q̇2 sin(q2) + lc3q̇1 sin(γ3 + q1))
2/2 + m5(q̇2(l4 sin(q2)

+ lc5 sin(γ5 + q2 + q3)) − l1q̇1 sin(q1) + lc5q̇3 sin(γ5 + q2 + q3))
2/2

+m4(l1q̇1 cos(q1) − lc4q̇2 cos(γ4 + q2))
2/2 + I3q̇

2
1/2 (5)

Pi = mighi
P = m1g (lc1 sin(q1 + γ1)) + m2g (lc2 sin(q2 + γ2)) + m3g (l2 sin(q2)

+ lc3 sin(q1 + γ3)) + m4g (l1 sin(q1) − lc4 sin(q2 + γ4))

+m5g (l1 sin(q1) − l4 sin(q2)) − m5glc5 sin(q2 + q3 + γ5) (6)
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Then, the dynamic model is obtained by satisfying the Euler–Lagrange Eq. (7).

d

dt

[
∂L

∂q̇i

]
− ∂L

∂qi
= τi ∀ i = 1, 2, 3 (7)

Considering the closed form of motion equations for the three-degree- of-freedom
(d.o.f) manipulator with parallel mechanism, the state space x = [x1, x2, x3, x4, x5,
x6, x7, x8, x9]T = [q, q̇,

∫ t
0 e1(t)dt,

∫ t
0 e2(t)dt,

∫ t
0 e3(t)dt]T ∈ R

9 and the input
vector u = [u1, u2, u3]T = τ ∈ R

3, the dynamic model of the robotic system can be
expressed as in (8), whereM ∈ R

3×3 is the inertia matrix, C[x3, x4, x5]T ∈ R
3 is the

centrifugal andCoriolis force vector,G ∈ R
3 is the gravity vector,Mi j ⊂ M ,Ci j ⊂ C ,

Gi ⊂ G ∀ i, j ∈ {1, 2, 3}. The ith Cartesian position error and Cartesian velocity
error are represented as ei = ξ̄i − ξi , ėi = ˙̄ξi − ξ̇i ∀ i = 1, 2, 3, respectively, where
ξ = [ξ1, ξ2, ξ3] = [x̂, ẑ, φ̂] is the Cartesian coordinate vector of the robotic system’s
end effector (position and orientation in the Cartesian space) and ξ̄ = [ξ̄1, ξ̄2, ξ̄3] =
[ ¯̂x, ¯̂z, ¯̂

φ] is the desired Cartesian coordinate vector to be followed by the end effector.
dx
dt

= f (x,u)

dx
dt

=
⎡

⎢⎣

[
x4 x5 x6

]T

M−1
(
u − C

[
x3 x4 x5

]T − G
)

[
e1 e2 e3

]T

⎤

⎥⎦ (8)

where:

M11 = I1 + I3 + l21m5 + l2c3m3; M22 = m3l
2
2 + m5l

2
4 + 2m5 cos(q3 + γ5)l4lc5

+m2l
2
c2 + m4l

2
c4 + m5l

2
c5 + I2 + I4 + I5

M33 = m5l
2
c5 + I5; M32 = M23 = m5l

2
c5 + l4m5 cos(q3 + γ5)lc5 + I5;

M31 = M13 = −l1lc5m5 cos(−q1 + q2 + q3 + γ5)

M12 = M21 = l2lc3m3 cos(q1 − q2 + γ3) − l1lc4m4 cos(−q1 + q2 + γ4)

− l1lc5m5 cos(−q1 + q2 + q3 + γ5)

− l1l4m5 cos(q1 − q2)

C12 = (l2lc3m3 sin(q1 − q2 + γ3) + l1lc4m4 sin(−q1 + q2 + γ4)

+ l1lc5m5 sin(−q1 + q2 + q3 + γ5)

− l1l4m5 sin(q1 − q2))q̇2 + l1lc5m5 sin(−q1 + q2 + q3 + γ5)q̇3
C13 = l1lc5m5 sin(−q1 + q2 + q3 + γ5)(q̇2 + q̇3)

C21 = l1l4m5 sin(q1 − q2)q̇1 − l1lc5m5 sin(−q1 + q2 + q3 + γ5)q̇1
− l2lc3m3 sin(q1 − q2 + γ3)q̇1
− l1lc4m4 sin(−q1 + q2 + γ4)q̇1
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C22 = −l4lc5m5 sin(q3 + γ5)q̇3;C23 = −l4lc5m5 sin(q3 + γ5)(q̇2 + q̇3);
C31 = −l1lc5m5 sin(−q1 + q2 + q3 + γ5)q̇1
C32 = l4lc5m5 sin(q3 + γ5)q̇2;C11 = C33 = 0

G1 = g(l1m4 cos(q1) + l1m5 cos(q1) + lc1m1 cos(q1 + γ1) + lc3m3 cos(q1 + γ3));
G3 = −glc5m5 cos(q2 + q3 + γ5)

G2 = glc2m2 cos(q2 + γ2) − gm5(l4 cos(q2) + lc5 cos(q2 + q3 + γ5))

− glc4m4 cos(q2 + γ4) + gl2m3 cos(q2)

In order to achieve high precision and accuracy control, the control system is
designed in the operational space. The proportional-integral-derivative (PID) con-
trol in the operational space, shown in (9), is implemented to track a desired trajectory
in the Cartesian space. The constants kpi , kii , kdi are the ith proportional, integral and
derivative gains of the PID control.

ui = J̆T
(
kpi ei + kdi ėi + kii

∫ t

0
ei (t)dt

)
∀ i = 1, 2, 3 (9)

The PID control in the operational space requires adding the last three dynamics in
(8). This control system does not require the inverse kinematic of the robotic system
but requires the direct kinematic and the Jacobian matrix J̆ ∈ R

3×3 to transform the
system outputs from the joint to Cartesian space. In addition, the Jacobian matrix is
required to transform from the Cartesian force/torque vector to joint torque vector u.
The direct kinematic and the elements of the Jacobian matrix are displayed in (10),
(11) and (12), respectively.

x̂ = l1 cos(q1) − l4 cos(q2) − l5 cos(q2 + q3);
ŷ = l1 sin(q1) − l4 sin(q2) − l5 sin(q2 + q3); φ̂ = q2 + q3 − π (10)

J̆11 = l1 sin(q1); J̆12 = l4 sin(q2) + l5 sin(q2 + q3);
J̆13 = l5 sin(q2 + q3); J̆31 = 0; J̆32 = J̆33 = 1 (11)

J̆21 = l1 cos(q1); J̆22 = −l4 cos(q2) − l5 cos(q2 + q3);
J̆23 = −l5 cos(q2 + q3) (12)

3.2 Design Parameter Vector

The design parameters of the control system involve the proportional, integral and
derivative gains of the PID control in the operational space due to these parameters
influencing the behavior of the closed-loop system. The control design parameters are
grouped in pc = [kp1, ki1 , kd1, kp2 , ki2 , kd2 , kp3 , ki3 , kd3 ]T ∈ R

9.
On the other hand, the closed-loop system behavior is also influenced by the

mechanical structure of the robotic system. The best selection of dynamic and
kinematic parameters of links can improve the closed-loop system performance.
As the dynamic and kinematic parameters of links depend on its geometry, a
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Fig. 2 Schematic representation of the isometric view of the ith link

prism shape with eight sides (see Fig. 2) is assumed. Then, the geometric param-
eters of links are proposed as the mechanical structure design vector ps =
[as1 . . . as5 , bs1 . . . bs5 , cs1 . . . cs5 , ds1 . . . ds5 , es1 . . . es5 ,
fs1 . . . fs5 , gs1 . . . gs5, hs1 . . . hs5, is1 . . . is5 , js1 . . . js5 , ks1 . . . ks5 ]T ∈ R

55. For more
details on how to obtain the dynamic and kinematic parameters of links from its geo-
metric parameters consult [40].

Thus, the structure-control design parameter vector p is given by (13).

p = [ps, pc]T ∈ R
64 (13)

3.3 Structure-Control Design Objectives

One of the main issues related to the design of a robotic system is the precision and
accuracy to perform a desired trajectory. Therefore, the integral squared error (ISE) in
the Cartesian space (ξ ∈ R

3) shown in (14) is used as one of the objective functions
to be minimized in the MODOP.

J̄1 = 1

t f

3∑

i=1

∫ t f

0
e2i (t) dt (14)

Another aspect to consider is the energy consumption of the robotic system. The
energy consumption can be related to the torque control signal u = τ provided by the
controller. The torque control signal can be decreased by changing both the control
gains and the mechanical structure. Consequently, the performance function given in
(15) is used as the second performance function.

J̄2 = 1

t f

∫ t f

0
‖u(t)‖2dt (15)
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3.4 Design Constraints

Design constraints involve both static and dynamic constraints. The first is imposed by
the desired trajectory to be executed by the robotic system end effector. A hypocycloid
trajectory in the X − Z Cartesian space and a cosine trajectory, given in (16)–(18),
are selected as the desired because they are difficult tasks (highly nonlinear behavior)
and the structure-control design approach can be highlighted.

h1(t) :0.32 + 0.0801 cos(1.2566t) + 0.0178 cos(5.6548t) −
_
x̂ = 0 (16)

h2(t) :0.2 + 0.0801 sin(1.2566t) − 0.0178 sin(5.6548t) −
_
ẑ = 0 (17)

h3(t) :0.4363 cos(1.2566t) −
_

φ̂ = 0 (18)

The second constraint is the dynamic behavior of the closed-loop systemwhich can
be simplified as in (19). The constraint (19) includes, in a single equation, the dynamic
model of the three-degree-of-freedom (d.o.f)manipulator (8)with its PID control in the
operational space (9). Due to this constraint being provided by a differential equation,
an initial condition vector is required. The initial condition is set to x(0) = xI N I ,
where xI N I = [1.6, 2.76, 0.82, 0, 0, 0, 0, 0, 0]T .

h4(x, p, t) :dx
dt

− f (x,p) = 0 (19)

The third constraint provides the torque limits of the control system u and these are
shown in (20), where uMax = 10Nm represents the torque limit.

gi (x,p, t) : |ūi (t)| − uMax ≤ 0 ∀ i = 1, 2, 3 (20)

A bad selection of the design variable vector p (control gains as well as of geo-
metric parameters) may destabilize the closed-loop system [41]. When this behavior
is presented, the robotic system yields undesirable higher-order dynamics which the
system cannot control. This effect makes the solver algorithm of the differential equa-
tion produce infinity or even an indeterminate number in the objective functions and
constraints, such that the solver algorithm can increase its convergence time, or even
produce a buffer overflow in the software. In order to face this issue, the constraints
given in (21) are proposed, where the maximum value for the state vector is selected
as TolMax = 1e100.

g j+3(x,p, t) : |xi (t)| − TolMax < 0,∀ j = 1, 2, . . . , 9 (21)

The last constraints are related to the upper and lower bounds in the design vari-
able vector p. These are stated in (22), where pMin and pMax are the minimum and
maximum bounds. The minimum and maximum bounds are shown in Table 1.

gi+12 : pMin ≤ p ≤ pMax ,∀i = 1, 2, . . . , 64 (22)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



J Optim Theory Appl (2017) 173:628–657 643

Table 1 Design variable vector bound

Geometric parameter Upper bound (m) Lower bound (m)

p1 − p5 0.5 0.35

p6 − p7 0.3 0.01905

p8 − p10 0.3 0.015

p11 − p12 0.1 0.0381

p13 − p15 0.1 0.03175

p16 − p19 0.3 0.015

p20 0.03 0.015

p21 − p25 0.03 0.00635

p26 − p35 0.1 0

pi pi−35 + pi−30 + pi−20 ∀i = 36, . . . , 40 0

pi pi−40 + pi−35 + pi−25 − pi−5 ∀i = 41, . . . , 45 0

pi pi−45 + pi−40 + pi−30 ∀i = 46, . . . , 50 0

pi pi−50 + pi−45 + pi−35 − pi−5 ∀i = 51, . . . , 55 0

Control parameter Upper bound Lower bound

p56 15000 0

p57 155000 0

p58 50 0

p59 10000 0

p60 55000 0

p61 50 0

p62 1000 0

p63 5000 0

p64 50 0

3.5 Multi-Objective Dynamic Optimization Problem Statement

The synergetic design of both the three-degree-of-freedom manipulator with parallel
mechanism and the PID control system in the operational space is established as a
multi-objective dynamic optimization problem. Such a problem consists in simultane-
ously finding the optimum structural geometry of links and the optimum PID control
gains [grouped in vector p ∈ R

64 (13)] such that minimize two performance functions
related to the structure design (15) and control (14). This problem is subject to the
dynamics of the closed-loop system (19), the maximum torque applied to the motors
(20), the desired trajectory to be executed by the end effector of the robotic system
(16)–(18), bounds in the structure-control design parameter vector p (22), as well as,
the constraint to avoid undesirable higher-order dynamics in the robotic system (21).
The formal statement of the mathematical programming problem for the study case is
given in (23).

Min
p

[ J̄1, J̄2]T (23)
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subject to:
dx
dt = f (x,p, t), x(0) = xI N I

g(x,p, t) < 0, ∈ R
12

h(x,p, t) = 0, ∈ R
3

h(t) = 0, ∈ R
3

pMin ≤ p ≤ pMax ∈ R
64

As the dynamics of the closed-loop system is a nonlinear differential equation, the
Euler method is used with an integration step of Δt = 5ms, final time of t f = 10 s
and the initial condition x(0) = xI N I .

4 Results

The experimental results consist in comparing the performance of the proposed multi-
objective exhaustive exploitation differential evolution algorithmwith the performance
of the multi-objective differential evolution without the exhaustive exploitation mech-
anism (called MODE). The algorithms are used to solve the structure-control design
framework presented in Sect. 3. Five experiments are set; in the first four experiments,
the exhaustive exploitation factor (EEF) is changed in the MOEEDE to analyze its
influence in the generation of non-dominated solutions for the structure-control design
already introduced. When the value of EFF approximates to 1, high exploration of
the search space and low exploitation of the non-dominated solutions are achieved.
Meanwhile, when the value of EFF approximates to 0, high exhaustive exploitation
of the non-dominated solutions and low exploration of the search space are carried out.
The values of the exhaustive exploitation factor are selected as follows: EEF = 0.4
for the Experiment 1, EEF = 0.54 for the Experiment 2, EEF = 0.73 for the Exper-
iment 3 and EEF = 0.9 for the Experiment 4. The fifth experiment consists in using
a MODE without the exhaustive exploitation mechanism. The first four experiments
are compared with the fifth experiment.

Making a fair comparison, two considerations are taken into account: (i) The scale
factor F and crossover probability CR values are obtained in the same way for all
experiments. The first parameter is randomly chosen in the intervals F ∈ [0.3, 0.9],
and the second is set to CR = 0.85. (ii) The population number and the maximum
number of generation for the fifth experiment is chosen such that the objective function
evaluation number in the MODE corresponds to the maximum number of objective
function evaluation among the first four experiments with MOEEDE. In this case,
Experiment 1 withEEF = 0.4 evaluates more objective functions (9600 evaluations);
then, the same function evaluation is given in Experiment 5. According to the previous
discussion, the parameters of the MOEEDE algorithm for the first four experiments
are chosen as: maximum number of individuals in the base population BP = 100,
maximumnumber of individuals in the second base populationBP2 = 200,maximum
number of individuals in the external population MP = 1000, maximum number of
individuals in a hyper-grid nMax Ind = 40, number of row nrow = 10 and column
ncol = 10 of the self-adaptive grid, GMaxMOEEDE = 6000, and the parameters of the
MODEare set as:NP = 100,GMaxMODE = 9600. Furthermore, the stop criterion for
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Table 2 Non-dominated solutions per number of iterations and the convergence time of the MOEEDE

Algorithm Run Non-dominated solutions per
iteration number

D S Convergence
time (h)

3000 4000 5000 6000

Exp. 1 EEF = 0.40

MOEEDE 1 172 498 275 354 0.3952 0.0033 35.65

MOEEDE 2 379 412 491 314 0.3584 0.0063 36.83

MOEEDE 3 306 545 402 470 0.4491 0.0013 36.61

MOEEDE 4 397 466 502 515 0.3819 0.0012 36.00

MOEEDE 5 324 434 468 446 0.4001 0.0030 34.67

Average 316 471 428 420 0.3970 0.0030 36.19

Exp. 2 EEF = 0.54

MOEEDE 1 12 331 462 505 0.3756 0.0010 32.75

MOEEDE 2 16 378 486 531 0.2634 0.0027 31.44

MOEEDE 3 5 305 336 569 0.7407 0.0002 31.17

MOEEDE 4 17 421 330 437 0.4510 0.0007 32.28

MOEEDE 5 14 331 546 535 0.4756 0.0011 32.58

Average 13 353 432 515 0.4612 0.0012 31.78

Exp. 3 EEF = 0.73

MOEEDE 1 15 20 249 423 0.5256 0.0006 26.81

MOEEDE 2 10 13 331 441 0.5525 0.0006 26.58

MOEEDE 3 10 16 340 398 0.5555 0.0007 26.90

MOEEDE 4 13 17 323 342 0.5326 0.0158 26.52

MOEEDE 5 0 9 451 558 0.5698 0.0004 26.99

Average 10 15 339 432 0.5472 0.0036 26.71

Exp. 4 EEF = 0.90

MOEEDE 1 12 20 11 349 0.6902 0.0020 21.84

MOEEDE 2 1 3 8 145 0.7439 0.0020 21.18

MOEEDE 3 18 22 22 382 0.6869 0.0015 21.47

MOEEDE 4 12 25 25 463 0.9240 0.0016 22.31

MOEEDE 5 4 12 17 314 0.6933 0.0026 22.40

Average 9 16 17 331 0.7477 0.0020 21.71

both algorithms is the maximum generation number,GMaxMOEEDE andGMaxMODE

for the MOEEDE and MODE, respectively.
Five independent runs are carried out for each experiment using a PCwith a 3.5GHz

Intel Core(TM) i7-4770K processor with 16GB of RAM. All runs are programmed
in MATLAB. The numerical results are shown in Table 2 for the MOEEDE and in
Table 3 for the MODE. The spread of the obtained non-dominated solutions in the
objective space is measured by using the spacing metric [42], and the term “S” is
used for this purpose. A value of zero for this metric indicates that the non-dominated
solutions are equally spaced. The number of non-dominated solutions per single run
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Table 3 Non-dominated solutions per number of iterations and the convergence time of theMODEwithout
the exhaustive exploitation mechanism

Algorithm Run Non-dominated solutions per iteration number D S Convergence
time (h)

3000 4000 5000 6000 7000 8000 9000 9600

MODE 1 16 18 15 16 16 17 17 17 1.3097 0.1331 30.22

MODE 2 11 11 19 13 17 19 16 22 1.2980 0.1019 30.30

MODE 3 17 13 15 11 11 14 14 14 1.1980 0.0993 29.31

MODE 4 2 4 7 4 13 22 15 16 0.7258 0.0441 27.87

MODE 5 10 18 20 17 22 21 22 23 1.3009 0.0975 30.44

Average 11 13 15 12 16 19 17 18 1.1665 0.0952 29.65

per some generations (intermediate and final generations) and the convergence time
in the last generation are also included in Tables 2 and 3. An additional metric, called
distance from the origin (named as “D”), is proposed to show how far the Pareto front
is from the minimum possible value of the performance functions, i.e., from the utopia
point [ J̄1, J̄2] = [0, 0]. This metric is defined as in (24), where nP∗ is the number of
non-dominated solutions at the end of the search and dJ̄1 and dJ̄2 are the normalized
difference vectors from the fitness of Pareto solutions in J̄1 ∈ PF and J̄2 ∈ PF to the
origin, respectively. A value of zero for the metric “D” means that the Pareto front is
the closest to the origin, i.e., the Pareto front presents the best trade-offs.

D =
nP∗∑

i=1

√√√√d2
J̄1

+ d2
J̄2

n2P∗
(24)

According to the results for the first four experiments previously presented in Table
2, different findings are observed:

– The average number of non-dominated solutions through the generations (see the
column non-dominated solutions per iteration number) increases at least 18 times
when the exhaustive exploitation mechanism is activated, i.e., when the generation
number is greater than EEF ∗ GMaxMOEEDE . Then, the exhaustive exploitation
mechanism promotes the generation of more non-dominated solutions.

– The activation moment of the exhaustive exploitation mechanism influences in
the search for better trade-offs between the performance functions. While more
generations use the exhaustive exploitation mechanism in the MOEEDE, better
trade-offs in the Pareto front are obtained. Results from Experiment 1 (EEF =
0.4), Experiment 2 (EEF = 0.54), Experiment 3 (EEF = 0.73) and Experiment
4 (EEF = 0.9) include the exhaustive exploitation mechanism at 60, 46, 27 and
10% of their generations, respectively. The average of the distance from the origin
to the Pareto front in Experiment 1 (D = 0.3970) was the lowest of the four
experiments, whereas the highest average distance from the origin to the Pareto
front is given in Experiment 4 (D = 0.7477). These results are confirmed in
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column “D” of Table 2. So, by assigning the exhaustive exploitation factor as
EEF = 0.4, the average performance of the MOEEDE provides a Pareto front
with better trade-offs.

– It is clear that the average convergence time increases as the use of the exhaustive
exploitation mechanism increases because it requires more function evaluation.
Thus, the average time in Experiment 1 was the highest (36.19h) of the first four
experiments, whereas the corresponding average time in Experiment 4 was the
lowest (21.71h).

– In the experiments, a set of non-dominated solutions with the best average
uniformly distributed Pareto front (see column “S” in Table 2) correspond to
Experiment 2. However, it is observed that there is not a clear relation between
the spacing metric “S” and the exhaustive exploitation factor EEF among the
experiments.

Comparing the numerical results between the performance of the MOEEDE (with
exhaustive exploitation mechanism; first four experiments) and the performance of the
MODE (without the exhaustive exploitation mechanism; fifth experiment) presented
in Tables 2 and 3, respectively, the following is found:

– More non-dominated solutions are discovered by using the exhaustive exploitation
mechanism. An average of 18 non-dominated solutions are found at the end of the
search by usingMODE; meanwhile, theMOEEDE presents the highest average of
515 non-dominated solutions in Experiment 2, and the lowest average of 331 non-
dominated solutions in Experiment 4. Hence, the MOEEDE increments at least
18 times the number of non-dominated solutions found in MODE. In addition, the
average distance from the origin to the Pareto front obtained by the runs of the first
four experiments withMOEEDE presents a lower distance than those providing by
MODE (see columns “D” in Table 2 and 3). The same happens with the average
of the spacing metric (see columns “S” in Tables 2 and 3). This indicates that
the exhaustive exploitation mechanism in MOEEDE promotes the generation of
more non-dominated solutions with better trade-offs (lower values to the objective
functions in a minimization problem) and a spacing between the non-dominated
solutions more uniform in the Pareto front than the MODEwhich does not include
this mechanism.

– Comparing the average convergence time of Experiment 1 (with exhaustive
exploitation mechanism) with those of Experiment 5 (without exhaustive exploita-
tion mechanism), where the evaluation of the objective function is the same, it is
observed that the average convergence time in Experiment 1 (36.19h) by using
exhaustive exploitation mechanism increases with respect to the convergence time
required without using its mechanism in Experiment 5 (29.65h). Therefore, the
convergence time is increased around 18.07%by the use of the exhaustive exploita-
tion mechanism.

In order to show the resulting Pareto front obtained by each experiment, the five
fronts given in each run per experiment are filtered into a single front and those are
visualized in Fig. 3. The non-dominated solution, the distance from the origin metric
and the spacing metric for the filtered results are given in Table 4. Based on the filtered
results, some findings are stated:
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Fig. 3 Filtered Pareto front for the five experiments

Table 4 Non-dominated
solutions in the filtered Pareto
fronts per experiment

Experiment Non-dominated solutions D S

1 358 0.4525 0.0027

2 542 0.2996 0.0026

3 434 0.4849 0.0010

4 327 0.5343 0.0016

5 16 0.7258 0.1096
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Fig. 4 Selection of two different non-dominated solutions in the filtered Pareto front of Experiment 2.
Square marker: [ J̄1, J̄2] = [9.9E−6, 0.211]. Triangle marker: [ J̄1, J̄2] = [0.0522E−6, 0.231]

– Figure 3 confirms the numerical results given by the distance from the origin
metric “D” in Table 4, i.e., the best filtered Pareto front is given by Experiment 2
(D = 0.2996) and theworst performance in the filtered Pareto front by Experiment
5 (D = 0.7258).

– It is observed that the non-inclusion of the exhaustive exploitation mechanism
in the MODE makes that the Pareto front presents a poor trade-off between the
performance functions as is displayed in Experiment 5 of Fig. 3.

– The superior performanceof theMOEEDE increases the number of non-dominated
solutions, at least 2000%, i.e., from 16 non-dominated solutions in Experiment 5
withMODE to theminimumnon-dominated solutions of 327 in Experiment 4with
MOEEDE. In addition, the spacing of the obtained non-dominated solutions in the
phenotype space is more uniformwithMOEEDE in the first four experiments (S ∈
[0.0010, 0.0027]) than that obtained with MODE in Experiment 5 (S = 0.11).

– All obtainednon-dominated solutions yieldedbyMODEat the endof the search are
dominated by the non-dominated solutions found inMOEEDE for all experiments.

Previous results show the superior performance of the exhaustive exploitationmech-
anism in the generation of a better Pareto front which provides the engineer with a
broad set of possible design solutions in the structure-control design framework. Then,
the decision-making process of the structure-control design solutions (non-dominated
solutions) is presented. Two different non-dominated solutions (structure-control
design solutions) in the filtered Pareto front of Experiment 2 are taken into account.
The filtered Pareto front of Experiment 2 is again presented in Fig. 4, and the selected
non-dominated solutions are visualized with a square marker (SM) and a triangle
marker (TM). The square marker has the performance [ J̄1, J̄2] = [9.9E−6, 0.211];
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Fig. 5 Behavior in the Cartesian space of the end effector of the parallel robot. Left column is with the
non-dominated solution of the square marker [ J̄1, J̄2] = [9.9E−6, 0.211]. Right column is with the non-
dominated solution of the triangle marker [ J̄1, J̄2] = [0.0522E−6, 0.231]. a End-effector’s linear position
and the desired trajectory. b End-effector’s angular position and the desired trajectory

meanwhile, the triangle marker has the performance [ J̄1, J̄2] = [5.22E−8, 0.231].
The behavior of the parallel robot end effector with the previously chosen structure-
control design solutions is displayed in Fig. 5, and the control signals to follow the
desired trajectory are shown in Fig. 6. All solutions to the right of the triangle mark
in Fig. 4 exhibit a mean error smaller than 0.234E−3 and 0.564E−3 for the Carte-
sian linear and angular position in the trajectory tracking, respectively. Otherwise, the
design solution with square mark presents a mean error of 0.560E−3 and 0.941E−3.
The design solution marked with a triangle fulfills with an acceptable position error in
the Cartesian Space such that the trajectory is perfectly traced by the end effector of
the parallel robot (see the right column of Fig. 5), but the energy consumption based
on the provided torque control is larger than the design solution marked with a square
(see the right column of Fig. 6). On the other hand, the design solution marked with
a square presents a visible error in the trajectory tracking (see the left column of Fig.
5), in spite of getting close to the chosen non-dominated solutions in the Pareto front.
It is clear that the performance functions, i.e., the position error and the energy con-
sumption, of the presented structure-control design are strongly connected, and the
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Fig. 6 Control signal behavior of the closed-loop system. Left column is with the non-dominated solution
of the square marker [ J̄1, J̄2] = [9.9E−6, 0.211]. Right column is with the non-dominated solution of the
triangle marker [ J̄1, J̄2] = [0.0522E−6, 0.231]

integrated design of the structure and control parameters can improve such trade-offs.
Consequently, the decision- making process depends on the robot required precision
movement for the specific application.

It is clear that different initial conditions (initial angular configuration of the robot)
for the differential equation related to the robotic manipulator dynamic behavior
greatly influence in the transient response of the robotic system output error (angu-
lar and velocities) to reach the trajectory. However, another question that arises with
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Table 5 Performance in both design objectives considering twenty different changes in the initial condition
of the robotic system

Design solution Mean Median Std

J̄1 J̄2 J̄1 J̄2 J̄1 J̄2

Triangle marker 5.99E−8 0.268 4.59E−8 0.216 2.9E−8 0.109

Square marker 4.58E−6 0.323 3.19E−6 0.209 1.53E−6 0.125

TM: [ J̄1, J̄2] = [5.22E−8, 0.231] and SM: [ J̄1, J̄2] = [9.9E−6, 0.211] are the nominal performance
(without changes in the initial condition). Std is the standard deviation

different initial conditions is related to the tracking error behavior in the steady state,
i.e., once the end effector of the robotic manipulator reaches the trajectory. In order
to verify such situation, twenty different changes in the initial conditions are chosen.
Those changes provide a proportional increment/decrement from±10% to±100% of
the initial condition reported in Section 3.4. In Table 5, the statistical analysis of the
data given by the Cartesian error J̄1 and the energy consumption J̄2 with those differ-
ent initial conditions are shown for the two structure-control design solutions marked
with a square and a triangle. From the nominal performance (without changes in the
initial condition) to the average variation of the performance functions in the steady
state, the triangle marker is less affected by initial conditions. In both design solutions,
changes in the initial conditions vary the performance functions around 50–60% from
their corresponding nominal values. Those variations are represented by the standard
deviation in Table 5 and can be considered very small; nevertheless, for applications
where the precision is an important issue, robust approach must be included into the
structure-control design framework [24] and is beyond the scope of the paper. Then,
the initial conditions can vary the nominal performance functions in the steady state
response.

The geometric parameters given by the link shapes, and both link dynamic and PID
control parameters, corresponding to the previous selected non-dominated solutions,
are shown inFig. 7 and inTable 6, respectively. It is observed that both link dynamic and
control parameters simultaneously influence the efficiency of the trajectory tracking
and the energy consumption.

From the design engineer’s point of view, with the inclusion of the exhaustive
exploitation mechanism in the differential evolution algorithm, the decision-making
process in the structure-control design framework is more diverse because for a pre-
cision of the robot movement (e.g., J̄1 ≥ 5.22E−8) there is a set of solutions with
different energy consumption.Considering thatmechanical parameters (shapeof links)
are more expensive (due to the manufacture process) than controller implementation,
and the robot performance is more influenced by the control parameters, then it is
better to have a large set of controller gains than different link shapes. Therefore, the
designer can select the design with the minimum required precision which consumes
less energy.
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Fig. 7 Shapes of links with the selected non-dominated solutions. Left column is with the non-dominated
solution of the square marker [ J̄1, J̄2] = [9.9E−6, 0.211].Right column is with the non-dominated solution
of the triangle marker [ J̄1, J̄2] = [0.0522E−6, 0.231]

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



654 J Optim Theory Appl (2017) 173:628–657

Table 6 Dynamic parameter and PID control gains of the two selected non-dominated solutions

Link i mi (m) lci (m) γi (rad) Ii (kgm
2)

Non-dominated solution of TM

1 4.3842 0.0826 3.0655 0.0868

2 0.9204 0.0421 0.6387 0.0112

3 0.3225 0.1079 0.0001 0.0027

4 0.9623 0.0123 0.0001 0.0779

5 0.4141 0.0077 3.1406 0.0086

Controller ui kpi kii kdi

Non-dominated solution of TM

1 12589.11 54987.95 165.46

2 14996.48 1002.54 108.39

3 649.91 125.73 1.41

Link i mi (m) lci (m) γi (rad) Ii (kgm
2)

Non-dominated solution of SM

1 4.2309 0.0835 3.0894 0.0854

2 1.0101 0.0304 0.7951 0.0141

3 0.3376 0.1049 0.0001 0.0030

4 0.9598 0.0112 −0.0009 0.0751

5 0.3849 0.0040 0.0088 0.0062

Controller ui kpi kii kdi

Non-dominated solution of SM

1 250.60 41.33 248.00

2 4866.94 2558.66 50.68

3 363.02 394.08 0.13

5 Conclusions

In this paper, an exhaustive exploitation mechanism is proposed in the differential
evolution algorithm to promote both diverse non-dominated solutions and a uniformly
distributed Pareto front in the structure-control design framework.

The EEM considers the thorough search in regions (hyper-grid) of the Pareto front,
where the mutation process requires individuals in a region such that the exploitation
of such individuals improves the Pareto front trade-offs.

The EEM in the optimization process of the structure-control design framework
can benefit the synergetic trade-offs of its design, and in addition, good approximation
to the Pareto front (sub-optimal) with extended and well-distributed Pareto solutions
can be obtained.

The comparative analysis of the MOEEDE with a DE algorithm that does not
include such mechanism (MODE) shows the superior performance of the proposal
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which results in finding better structure-control design trade-offs. From a computa-
tional point of view, the convergence time of the MOEEDE is larger than the MODE.
Nevertheless, from a design engineering point of view, the found non-dominated solu-
tions are considerably improved, and more sets of possibilities can be used by the
designer. Hence, the decision- making process will depend on the required perfor-
mance for a specific application.

Then, the structure-control design approach not only requires using the simulta-
neous optimization strategy, but also an analysis of how more, and better trade-offs
in the design solutions are obtained by the optimization technique. Due to the high
trade-offs in the structure-control design problem, the analysis and improvements of
the optimization technique is an important task to find more and diverse solutions with
better coupling effects in the combined structure/controller system.

Future research involves the inclusion of mechatronic system initial condition
uncertainties in the structure-control design framework based on simultaneous strate-
gies.
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